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Abstract—Multicast short video streaming (MSVS) can ef-
fectively reduce network traffic load by delivering identical
video sequences to multiple users simultaneously. The existing
MSVS schemes mainly rely on the aggregated video requests to
reserve bandwidth and computing resources, which cannot satisfy
users’ diverse and dynamic service requirements, particularly
when users’ swipe behaviors exhibit spatiotemporal fluctuation.
In this paper, we propose a user-centric resource management
scheme based on the digital twin (DT) technique, which aims to
enhance user satisfaction as well as reduce resource consumption.
Firstly, we design a user DT (UDT)-assisted resource reservation
framework. Specifically, UDTs are constructed for individual
users, which store users’ historical data for updating multicast
groups and abstracting useful information. The swipe probability
distributions and recommended video lists are abstracted from
UDTs to predict bandwidth and computing resource demands.
Parameterized sigmoid functions are leveraged to characterize
multicast groups’ user satisfaction. Secondly, we formulate a
joint non-convex bandwidth and computing resource reservation
problem which is transformed into a convex piecewise problem
by utilizing a tangent function to approximately substitute the
concave part. A low-complexity scheduling algorithm is then
developed to find the optimal resource reservation decisions.
Simulation results based on the real-world dataset demonstrate
that the proposed scheme outperforms benchmark schemes in
terms of user satisfaction and resource consumption.

Index Terms—Digital twin, resource management, multicast
transmission, user-centric.

I. INTRODUCTION

The proliferation of short video platforms, such as TikTok,
Instagram Reels, and YouTube Shorts, enabled by the ubiquity
of smartphones and high-speed wireless networks, has ushered
in a new era of digital entertainment [2], [3]. According to
a recent report from TikTok, the number of active global
users has risen from 902 million to 1.47 billion in 2022 and
will continue to maintain significant growth [4]. However, this
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short video streaming surge puts a significant burden on the ex-
isting wireless network infrastructures. Particularly, the ultra-
definition and panoramic short videos poses new requirements
on the transmission and computing capabilities of wireless
networks, especially on higher bandwidth (300 Mbps) and
transcoding speed (30.2 FPS), for providing immersive user
experience [5], [6]. Multicast transmission, as an important
technology in wireless networks, allows a single data stream to
be disseminated to numerous users in a group simultaneously.
By applying multicast transmission to short video streaming,
the bandwidth utilization and network throughput can be
effectively enhanced [7], [8].

To support multicast short video streaming (MSVS), net-
work resources, including bandwidth and computing resources,
are required. Specifically, spectrum bandwidths are required
for video delivery to each multicast group [9], and com-
puting resources are required for video transcoding for each
multicast group [10]. For consistent quality of service (QoS)
provisioning, such network resources need to be reserved in
advance [11], [12]. Nevertheless, existing resource reservation
schemes are mainly based on the aggregated video requests
while neglecting the unique users’ behaviors in watching short
videos, i.e., swipe behaviors. Without considering the swiping
behaviors that can make videos not completely played by
users, the resource demands can be overestimated and the
reserved resources can be underutilized. As the swipe behav-
iors are user-specific [13], resource reservation can incorporate
the user-specific swipe behaviors, i.e., user-centric resource
reservation, is desired for efficient resource utilization in the
MSVS.

Digital twin (DT) is a potential technology to realize the
user-centric resource reservation. DT is defined as a full digital
representation of a physical object, and real-time synchro-
nization between the physical object and its corresponding
digital replica [14]. To update current end users’ statuses,
such as network conditions, data traffic, and mobility tra-
jectories, user DTs (UDTs) are constructed for individual
users. The data stored in UDTs can be leveraged to analyze
users’ transmission rates and behavior patterns for resource
reservation. In the MSVS scenario, UDTs can store users’
historical networking and personal information, and analyze
their video traffic patterns and watching behaviors. Based on
the distilled coarse- and fine-grained user information from
UDTs, users’ bandwidth and computing resource demands
can be accurately predicted to facilitate the effective user-
centric resource reservation. In this work, the precise role of
constructed UDTs is to accurately cluster users into different
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multicast groups, and abstract swipe probability distributions
and recommended video lists for resource reservation.

The motivation of the UDT-based resource reservation for
multicast short video streaming includes three aspects. Firstly,
since user status differs from each other, inaccurate user
clustering can lead to low transmission rate and resource
wastage due to various channel conditions and frequent swipe
behaviors on uninterested video content, respectively. There-
fore, it is essential to develop an accurate and efficient user
clustering scheme. Secondly, due to users’ differentiated user
satisfaction on service quality, multicast groups may have
different levels of satisfaction with the reserved bandwidth and
computing resources. Therefore, it is critical to establish the
user satisfaction model to characterize the impact of resource
reservation on each multicast group’s satisfaction. Thirdly,
since the joint bandwidth and computing resource reservation
is usually a complex and non-convex problem, how to design a
low-complexity algorithm to solve it with near-optimal results
is an important issue.

Designing an effective UDT-based resource reservation
scheme needs to address the following challenges: 1) incor-
porating swipe behaviors in resource reservation decision-
making; 2) establishing the mathematical model between mul-
ticast groups’ user satisfaction and reserved resources. Specif-
ically, users’ swipe behaviors are stochastic and spatiotempo-
rally varied, which are difficult to be predicted in real time.
Therefore, how to conduct effective data abstraction to obtain
the distilled swipe feature and utilize it to predict bandwidth
and computing resource demands is challenging. Furthermore,
due to the dynamics of users’ personalized preferences and
sensitivities to service quality, the same amount of reserved
resources to one multicast group can lead to different user
satisfaction at different time. Therefore, how to establish and
update each multicast group’s user satisfaction model in each
resource reservation window is challenging.

In this paper, we propose an UDT-assisted resource reser-
vation scheme, which can effectively enhance user satisfaction
and reduce resource consumption. The main contributions are
summarized as follows:

• Firstly, we propose a novel UDT-assisted resource reser-
vation framework to incorporate the impact of swipe
behaviors. Specifically, we construct UDTs to store users’
historical data, including channel conditions, locations,
swipe timestamps, and preferences. A novel user clus-
tering algorithm is proposed to analyze UDTs’ data for
multicast group construction. The proposed user cluster-
ing algorithm consists of three parts, i.e., autoencoders,
a double deep Q-network (DDQN), and the K-means++
method, which are responsible for UDTs’ data compres-
sion, clustering number determination, and fast user clus-
tering, respectively. Then, the group-level information,
i.e., the swipe probability distribution and recommended
video list, for each multicast group is abstracted. Based on
that, multicast groups’ average engagement time, video
traffic, and computing consumption can be analyzed to
predict bandwidth and computing resource demands for
resource reservation.

• Secondly, we establish a user satisfaction model to quan-
tify the impact of bandwidth and computing resource
reservation on user satisfaction. Specifically, we adopt
a real-world user satisfaction dataset to explore the re-
lationship between resource demand, reserved resources,
and user satisfaction. Based on the observation of exper-
iments, we find that user satisfaction is positively and
negatively exponential with buffer length and rebuffering
time. By using the buffer length and rebuffing time as a
linkage, we establish an exponential mathematical model
for bandwidth reservation satisfaction. Similarly, video
quality is selected as the intermediate variable to build an
exponential mathematical model for computing resource
reservation satisfaction.

• Thirdly, our objective is to maximize the system utility
consisting of user satisfaction and resource consump-
tion in each resource reservation window. Since the
formulated problem is non-convex and difficult to solve,
we first transform it into two independent subproblems
regarding bandwidth and computing resource reservation,
respectively. Then, we perform continuous processing on
these two subproblems and utilize the tangent function to
approximately substitute the convex parts, which trans-
forms the original subproblems into convex problems.
Finally, we design a linear approximation method to make
the near-optimal resource reservation decisions for the
transformed convex problems. The extensive simulation
results on real-world short video streaming datasets show
that the proposed scheme can effectively improve system
utility as compared with the state-of-the-art resource
reservation schemes.

The remainder of this paper is organized as follows. Related
works are presented in Section II. The considered scenario and
the UDT-assisted resource reservation scheme are presented
in Sections III and IV, respectively. The user satisfaction, the
problem formulation, and the proposed scheduling algorithm
are presented in Sections V, VI and VII, respectively. Simula-
tion results and the generalizability of proposed approach are
provided in Sections VIII and IX, respectively. Finally, Section
X concludes this paper.

II. RELATED WORK

MSVS can distribute video sequences from a single base
station (BS) to multiple users concurrently over the same
wireless channels. This approach exhibits two primary ad-
vantages, i.e., efficient bandwidth utilization and scalable
user scale [15], [16]. To facilitate the MSVS within 5G
networks, extensive works are devoted to optimizing multicast
transmission performance from different directions, such as
the novel architecture design by integrating network function
virtualization and mobile edge computing technique [17],
transmission orchestration by leveraging collected global net-
work information [18], [19], and signal multiplexing with non-
orthogonal multiple access to transmit different segment layers
[20]. These studies demonstrate innovative approaches toward
enhancing the performance of MSVS.

To ensure the service quality for the MSVS, resource
reservation for multicast groups is essential. Historical video
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contents and bitrates are usually selected to forecast users’
future peak video traffic, which can provide a primary basis
for bandwidth resource reservation [21]. Additionally, bitrate
fluctuation and video quality are usually leveraged to predict
transcoding consumption, which can serve as a fundamental
foundation for VM instance reservation [22]. To flexibly adjust
resource reservation in the high-mobility and ultra-density
network scenario, existing hierarchical resource reservation
schemes usually predict video traffic in grid-partitioned re-
gions [23], estimate basic resources per region based on QoS
requirements [24], and employ machine learning methods to
fine-tune resource reservation [25]. However, these schemes
do not incorporate the dynamics of user behavior, such as
swipe probability, on-off patterns, etc., potentially leading
to inaccurate user clustering. Furthermore, solely relying on
aggregated video requests to reflect regional traffic patterns is
not enough to support accurate resource demand prediction.
In this case, reserved resources can occur underutilization.

DT as an important virtualization technology was first
introduced to monitor and mitigate anomalous events for flying
vehicles [26]. By introducing DTs into the next-generation
wireless network, the existing network architecture can realize
holistic network virtualization for flexible and accurate re-
source management. We refer readers to recent comprehensive
surveys and tutorials on DTs to be familiar with this topic
[27]–[29]. There also exist some technical papers aiming at
utilizing DTs to improve network performance. Sun et al. and
Huynh et al. utilized DTs to estimate edge servers’ states
and the entire MEC system, which can provide seamless
and accurate training data for offloading decisions [30] [31].
To coordinate the computing resource management of edge
servers in real time, DTs were used to timely monitor the
centralized training process for resource scheduling in the
aerial edge networks [32]. Furthermore, DTs were used to
capture the time-varying demand of computing resources of
IoT devices to assist the computation offloading decisions
in [33]. A learning-based prediction model residing in the
DT was developed to predict the waiting time of relays and
transmit the predicted results in [34], which can efficiently
synchronize real-time data. Lu et al. formulated an edge
association problem for adaptively placing and migrating DTs
based on the dynamics of network states and end users, which
can efficiently reduce the service latency [35]. These pio-
neering works can effectively improve resource management
performance in terms of resource allocation, edge association,
and task offloading.

Recently, a few early research works focused on utilizing
DTs to enhance network performance in terms of resource
reservation. Zhou et al. constructed UDTs for individual users
to analyze their mobility patterns and proposed an improved
particle swarm optimization method to enable customized
resource reservation [36]. To alleviate data sparsity when per-
forming the DT-assisted traffic prediction, a short-term traffic
flow and velocity prediction method based on data similarity
was proposed in [37]. Furthermore, since it is difficult to op-
erate DTs on different granular levels in a large and heteroge-
neous user scale, Vaezi et al. proposed a five-stage implemen-
tation framework to progressively abstract component-level,
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Fig. 1. UDT-assisted resource reservation framework for MSVS.

subsystem-level, and global-level information [38]. Compared
with related resource reservation work, we have proposed an
efficient user clustering algorithm to process high-dimensional
and time-series UDTs’ data. Furthermore, we have abstracted
the swipe probability distributions from UDTs for accurate
resource demand prediction. Fianlly, we have constructed the
user satisfaction model for each multicast group to characterize
the relationship between user satisfaction, predicted resource
demands, and reserved resources, which can help tailored and
accurate resource reservation.

III. CONSIDERED SCENARIO

As shown in Fig. 1, we consider a UDT-assisted MSVS
scenario, which consists of multiple BSs, an edge server (ES),
users, and UDTs.

• BSs: BSs utilize multicast technology to transmit short
videos to different multicast groups. The set of multicast
groups is denoted by G = {1, · · · , G}. The set of
bandwidths for all BSs is denoted by M = {1, · · · ,M}.

• ES: The ES connects to all BSs and stores popular short
videos with the highest version (bitrate) to avoid frequent
video retrievals from content providers. The stored short
videos can be transcoded to a lower version in the
transcoder to adapt to users’ dynamic channel conditions
and swipe behaviors. The set of VM instances for the
transcoders is denoted by N = {1, · · · , N}, and the
computing capability of each VM instance is denoted by
ω.

• Users: Users with similar statuses, such as preferences,
swipe behaviors, locations, and channel conditions, are
clustered into one multicast group, and the corresponding
user set is denoted by Kg= {1, · · · ,Kg}. Users in the
same multicast group are recommended the same short
video list and receive them by the multicast transmission.

• UDTs: There are multiple UDTs deployed at the ES. Each
UDT corresponds to a user and stores users’ statuses. BSs
are responsible for collecting real-time users’ statuses to
update UDTs. UDTs’ data are utilized to abstract some
useful information, such as data similarity and swipe
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Fig. 2. UDT data collection procedure.

probability distribution, which can help the network con-
troller realize an accurate multicast group construction
and resource demand prediction.

The UDT-assisted resource reservation framework for
MSVS operates as follows. In each resource reservation win-
dow, user statuses are uploaded to the ES to update corre-
sponding UDTs and adjust multicast groups. In each multicast
group, UDTs’ swipe timestamps and preferences are used to
abstract the swipe probability distribution and recommended
video list for accurate bandwidth and computing resource
demand prediction. Based on the predicted information, the
network controller reserves appropriate bandwidths and VM
instances for each multicast group.

IV. UDT-ASSISTED RESOURCE RESERVATION SCHEME

A. UDT Construction

UDT consists of a finite data pool and a data analysis func-
tion as shown in Fig. 2. The data pool records a user’s recent
status through diversified data collection frequencies. The data
analysis function investigates a user’s swipe timestamps to
obtain a swipe probability distribution for each video type. The
construction of a UDT can be summarized into two phases.

1) Data Collection: As shown in Fig. 2, BS collects a
user’s data from two aspects, i.e., networking-related data and
behavior-related data. The networking-related data include a
user’s real-time channel conditions and locations, which are
utilized to estimate the transmission rate. The behavior-related
data consist of a user’s swipe timestamps and preferences.
The swipe timestamps reflect a user’s swipe behavior [39],
which are used to abstract swipe probability distribution for
engagement time prediction. The preferences are leveraged for
the recommended video list update. By integrating these two
kinds of data, UDTs can well reflect users’ real-time statuses
and predict bandwidth and computing resource demands.

Data collection number can be different for various UDT
data attributes in each resource reservation window. Given that
a low-speed mobility scenario where users’ channel conditions
usually vary on a small timescale [40], the data collection
number of a user’s channel condition and location in one
resource reservation window, T , is denoted by F1. Since
the swipe probability needs to be calculated over several
short videos, the corresponding data collection number of a
user’s swipe timestamps in one resource reservation window
is denoted by F2. A user’s preference is an essential metric
to determine which videos should be recommended. Since the

user’s preference is relatively dynamic data that is updated
based on the user’s like, share, and swipe frequency [41], the
data collection number keeps consistent with that of the swipe
timestamps to ensure the data freshness.

2) Data Analysis: A UDT’s functionality consists of two
parts, i.e., a user’s swipe behavior analysis module and a data
interaction module. The former analyzes the collected swipe
timestamps to abstract swipe probability distributions. The
latter provides stored data and the abstracted swipe probability
distributions to the network controller to update multicast
groups and predict resource demands. In resource reservation
window t, user k’s swipe probability distribution, ptk,c (e), for
video type c is updated by

ptk,c (e) = λpt−1
k,c (e) + (1− λ)

At−1
k,c (e)

Ât−1
k,c

, (1)

where e is the video timestamp ranging from 1 to 15. Param-
eter λ is a weighting factor ranging from 0 to 1. The smaller
λ means a smaller impact of previous swipe behaviors on
user k’s current swipe probability distribution. Here, At−1

k,c (e)
represents user k’s swipe numbers for video type c in previous
window t − 1, which is counted by swipe timestamps. In
addition, Ât−1

k,c indicates the number of transmitted videos of
type c to user k in previous window t− 1.

B. UDT-Assisted Multicast Group

Based on stored data in UDTs, we can analyze users’
similarities to divide users with similar statuses into the same
multicast group. A three-step method is proposed to realize
fast and accurate multicast group construction. Specifically, au-
toencoders are first employed to compress time-series UDTs’
data for dimension reduction. Then, a deep reinforcement
learning (DRL) network is adopted to determine the clustering
number by mining users’ intrinsic correlation. Finally, the K-
means++ algorithm [42] is utilized to realize a fast multicast
group construction based on the determined clustering number
[43]. After multicast groups are constructed, we can abstract
the swipe probability distribution and recommended video list
for each multicast group.

1) Clustering Number Determination: UDTs’ data consist
of four dimensions and each dimension corresponds to time-
series data, directly using a DRL method to analyze UDTs’
data may suffer from the curse of input dimension. Therefore,
we add four Autoencoders to the existing DDQN [44] to
compress UDTs’ data, which can effectively reduce the input
dimension [45]. The compressed data are further input to the
actor-critic network for determining an appropriate clustering
number, as shown in Fig. 3.

As shown in Fig. 3, the processed UDTs’ data consist of
users’ historical channel conditions,

{
hf
k,t−1

}
k∈K,f∈F1

,

locations,
{
Y f
k,t−1

}
k∈K,f∈F1

, swipe timestamps,{
wf

k,t−1

}
k∈K,f∈F2

, and preferences,
{
P f
k,t−1

}
k∈K,f∈F2

, in

window t− 1. Since each UDT data attribute has a temporal
correlation, we utilize Autoencoders to process these data
to reduce input dimension and abstract temporal features.



5

Target Q-network

0

, 1K t
h

−
1

, 1

F

K t
h

−

0

1, 1t
Y

−
1

1, 1

F

t
Y

−

0

1, 1t
P

−
3

1, 1

F

t
P

−

0

1, 1t
h

−
1

1, 1

F

t
h

−

0

, 1K t
Y

−
1

, 1

F

K t
Y

−

Autoencoder 1

Autoencoder 2

Main Q-network

UDTs’ data 

( ), ;t tQ s a 

Data compression

Update

Autoencoder 3

0

1, 1t
w

−
2

1, 1

F

t
w

−

0

, 1K t
w

−
2

, 1

F

K t
w

−

0

, 1K t
P

−
3

, 1

F

K t
P

−

Autoencoder 4

Loss 

function

ty

Gradient

Λ𝑡
∗

Fig. 3. The improved DDQN architecture for clustering number determina-
tion.

The processed UDTs’ data are further input into the DDQN,
consisting of one target and one main Q-network, for model
training to obtain the appropriate clustering number Λ∗

t .
Specifically, the main Q-network with network parameter θ
takes the current processed UDTs’ data as input and outputs a
set of Q-values. The target Q-network with network parameter
θ′ is a copy of the main Q-network that is periodically updated
to match the parameters of the main Q-network. The target
value, yt, of DDQN is given by

yt = rt+1 + γQ (st+1, argmaxQ (st+1, a; θ) ; θ
′) , (2)

where main Q-network Q (s, a; θ) is utilized for the clustering
number determination and target Q-network Q (s, a; θ′) is used
for the value evaluation. Here, s and a represent processed
UDTs’ data and the clustering number, respectively. Since the
objective of clustering is to reserve appropriate resources for
different multicast groups to enhance system utility, we select
the system utility that will be introduced in Section VI-A as
reward r. During the training process, the main Q-network is
updated to minimize the difference between the predicted and
true Q-values. The target Q-network is periodically updated to
match the parameters of main Q-network to help stabilize the
training process.

2) User Clustering: When the clustering number of multi-
cast groups is determined, we can classify users into different
multicast groups based on UDTs’ data similarities. We adopt
the K-means++ algorithm to complete the user clustering
process. Specifically, the Euclidean distance, D (i, j), between
UDTs i and j is first calculated as follows:

D (i, j) =
∥∥∥h̃i − h̃j

∥∥∥
2
+
∥∥∥Ỹi − Ỹj

∥∥∥
2
+
∥∥w̃i − w̃j

∥∥
2
+
∥∥∥P̃i − P̃j

∥∥∥
2
,

(3)
where h̃i, Ỹi, w̃i, P̃i represent the compressed UDT data at-
tributes output from autoencoders. Then, the Euclidean dis-
tance between the sampling UDT and the current clustering
center is used to calculate the selection probability. Since the
longer distance causes a higher selection probability as the
new clustering center, the selection probability, Θ(i), of UDT

i is depicted as

Θ(i) =
D(i, τ)

2∑
j D(j, τ)

2 , (4)

where τ denotes the current clustering center. After several
iterations, users with similar statuses are clustered into one
multicast group. The set of constructed multicast group is
denoted by Ωt = {1, · · · ,Λ∗

t }1.
3) Abstracted Information: After constructing multicast

groups, we need to abstract some useful information from
each of them to predict resource demands in each resource
reservation window. Recommended video lists and corre-
sponding swipe probability distributions can well achieve this
requirement. To obtain a good recommended video list, a good
video recommendation mechanism not only needs to consider
video popularity distributions but also users’ preferences [41].
The former can be directly obtained by analyzing view counts
and engagement time from content providers. In window t−1,
the popular video set is denoted by V = {1, · · · , V } and the
corresponding popularity distribution is {Ev}v∈V . The latter is
time-series data and exists a relatively strong temporal correla-
tion in each multicast group. The collected preference, P f

k,t−1,

in UDT k is a 1 × C matrix, i.e.,
{
P f,1
k,t−1, · · · , P

f,C
k,t−1

}
,

reflecting user k’s preferences of C video types. To accurately
estimate multicast group g’s preference matrix,

{
P̂ c
t,g

}
c∈C

,
in current window t, we first calculate the users’ average
preference on each kind of video in previous window t − 1,
and then integrate it with the discounted preference, λ̃P̂ c

t−1,g ,
in previous window t− 1, as follows:

P̂ c
t,g = λ̃P̂ c

t−1,g +
1

KgF2

Kg∑
k=1

F2∑
f=1

P f,c
k,t−1,∀c ∈ C, (5)

where λ̃ is a parameter ranging from 0 to 1. The recommended
ranking, ℜt,g,v , of video v for multicast group g in window
t combines the video popularity distribution and preference
matrix, which is depicted as ℜt,g,v = Ev

∑
c∈C Ic(v)P̂

c
t,g .

Here, Ic(v) is an indicator function, representing if video v
belongs to type c, Ic(v) = 1; otherwise, Ic(v) = 0.

In each window, the recommended video list, τg , for multi-
cast group g is constituted based on the recommended rankings
in popular video set V , and the corresponding list length is
denoted by ρ. In addition, each video in the recommend list
has a unique swipe probability distribution, pvg,t (e), which
can be abstracted by accumulating users’ swipe probability
distributions in a multicast group, as follows:

pvg,t (e) =
∑
k∈Kg

∑
c∈C

Ic(v)p
t
k,c (e). (6)

4) The Necessity of Intricate Design: Since UDTs’ data
are multi-dimensional and time-series, directly inputting them
into a neural network to analyze users’ similarities for user

1The computational complexity of the K-means++ algorithm is
O (4πΛ∗

tK), where π and K denote the number of iterations and users,
respectively. The K-means++ algorithm has two benefits, i.e., low computa-
tional cost and fast convergence.
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clustering hardly achieves a satisfactory performance. To han-
dle this issue, we propose a novel user clustering algorithm
consisting of three modules, i.e., autoencoders, a DDQN, and
the K-means++ method, which are responsible for UDTs’ data
compression, clustering number determination, and fast user
clustering, respectively. Although this proposed method seems
intricate, it can well adapt to the large-scale time-series UDTs’
data and analyze users’ similarities for accurate user clustering.
Furthermore, the autoencoders and DDQN can be trained
offline and operated online, which can effectively reduce the
algorithm’s runtime.

C. UDT-Assisted Resource Demand Prediction
Based on the abstracted grouping information, i.e., swipe

probability distributions and recommended video lists, each
multicast group’s bandwidth and computing resource demands
can be predicted to help the network controller to facilitate an
efficient resource reservation scheme.

1) Bandwidth Resource Demand: Since users’ swipe be-
haviors can cause part of videos not to be played and thus
lead to a waste of bandwidth resources, we analyze users’
swipe probability distributions on the recommended video list
to make an accurate bandwidth resource demand prediction.

First, the average engagement time, W t
g , of multicast group

g at window t is estimated based on the abstracted swipe
probability distribution, which is expressed as

W t
g =

∑
v∈τg

∫ ℘(v)

0

(
1− pvg,t(e)

)
ede. (7)

Second, we need to predict the video traffic of each multi-
cast group. Since one video can be transmitted to all users by
multicast transmission in a multicast group, the video traffic
of each user should not be accumulated. In addition, since
the multicast video version adaptively changes with users’
dynamic channel conditions and buffer lengths, we select the
average multicast video version, l, in previous window t−1, to
approximate the multicast video version in current window t.
Based on the above analysis, the video traffic, Y t

g , of multicast
group g at window t is predicted by

Y t
g =

∑
v∈τg

∫ ℘(v)

0

(
1− pvg,t(e)

)∑l

l=1
zlv (e)de, (8)

where zlv (e) is the file size of segment layer l of video v at
video timestamp e.

Based on the estimated average engagement time and video
traffic, the bandwidth resource demand, Rt

g , is given by

Rt
g = W t

g/Y
t
g . (9)

2) Computing Resource Demand: Since the caching capac-
ity of an edge server is limited, we only cache the basement
layer of each recommended segment in the edge server to guar-
antee users’ basic watching requirements. Enhancement layers
can be obtained by transcoding and then jointly transmitted
with the basic layer to users to enhance the video quality. In
this process, the computing consumption is predicted by

Zt
g = µ

(
Y t
g −

∑
v∈τg

∫ ℘(v)

0

(
1− pvg,t(e)

)
z0v (e) de

)
,

(10)

where µ is the computing density for video transcoding, and
z0v (e) is the file size of the basement layer of video v at video
timestamp e.

Based on the estimated average engagement time and com-
puting consumption, the computing resource demand, Ot

g , is
given by

Ot
g = Zt

g/Y
t
g . (11)

3) How Challenges Associated with User Behaviors Are
Addressed: Since the user’s swipe behavior is stochastic and
spatiotemporal varied in the small timescale, it is hard to
directly incorporate its impact on resource reservation. How-
ever, the user’s swipe behavior follows a certain probability
distribution in the large timescale, such as the swipe proba-
bility distribution. Therefore, we first analyze UDTs’ data to
obtain each multicast group’s swipe probability distribution
information. Based on the analyzed information, we can then
accurately predict each multicast group’s resource demand in
the next resource reservation window, which can well adapt
to the dynamics of users’ swipe behaviors.

D. The Feasibility of Constructing and Maintaining UDTs

The resource reservation process is not a real-time scenario
but a large timescale scenario, which indicates that UDTs
do not have to be updated in real time. In each resource
reservation window, some optimizations are made on data
collection and computation for UDTs to reduce construction
maintenance cost.

Data collection cost: We set different data collection fre-
quencies for each UDT data attribute in each resource reser-
vation window. Since we consider a low-speed mobility
scenario where users’ channel conditions vary on a small
timescale [40], we collect the user’s channel condition and
location every 2 sec. Since the swipe probability needs to be
calculated over several short videos and the user’s preference
is relatively static, the user’s swipe timestamps and preference
are collected every 1 min. Through differentiated data col-
lection frequencies, we can effectively reduce data collection
cost for UDT construction.

Data computation cost: There mainly exist two kinds of
computing processes for UDT maintenance, i.e., the swipe
probability update in each UDT, and the user clustering and
information abstraction among UDTs. For the former, we only
need to calculate the updated swipe probability based on the
linear summation formula once in each resource reservation
window (a large timescale that we set for 5 min in this work),
which does not cause much computational consumption. For
the latter, the improved user clustering algorithm does not have
high computational complexity due to the data dimensionality
reduction and only needs to be implemented once in each
resource reservation window, which does not bring much
computational consumption. Therefore, the computation cost
for UDT maintenance can be effectively relieved.

Data caching cost: Each UDT consists of a finite data
pool and a simple data analysis function. The newly collected
data will gradually replace the oldest data. The data analysis
function is just for swipe probability update, which does
not have complex computation process. Therefore, the data
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caching for each UDT does not occupy too much caching
space. Furthermore, the deployment of UDTs is distributed to
network edge nodes, which can effectively reduce the caching
overhead due to centralized caching.

E. The Difference Analysis

The proposed scheme consists of UDT construction, UDT-
assisted multicast group, and UDT-assisted resource demand
prediction, each of which makes a customized design to
enhance the efficiency of UDT data processing. Specifically,
UDT construction consists of two modules, i.e., data collection
and data analysis, where we set different data collection
frequencies and make low-frequency data analysis for each
UDT data attribute to reduce data collection and analysis cost.
For the UDT-assisted multicast group, we design an improved
user clustering algorithm that well integrates the advantages
of autoencoder, DDQN, and K-means++ to efficiently handle
multi-dimensional and time-series UDT data. In the UDT-
assisted resource demand prediction, we analyze from the per-
spective of swipe probability distribution instead of traditional
video request distribution, which can predict more accurate
bandwidth and computing resource demands by incorporating
the impact of user swipe behaviors.

Compared with existing user profiling methods, our con-
structed UDTs have two main differences. Firstly, our user
profile not only includes users’ behavior and preference char-
acteristics but also network conditions. Each user’s channel
conditions are collected to update respective UDTs, and also
used as an essential clustering factor to update multicast
groups. Secondly, traditional user profiling methods usually fo-
cus on the statistical analysis of individual user behaviors, such
as swipe probabilities and preferences. Our UDT information
extraction approach is distinct. Specifically, we proposed an
improved user clustering algorithm for multicast group update.
For each updated multicast group, we statistically analyze
users’ status information to derive the swipe probability dis-
tribution and recommended video list that reflect the group’s
statistical characteristics, which deviates from traditional user
profiling methods.

V. USER SATISFACTION

Since the system bandwidth and computing resources are
limited, multicast groups’ resource demands may not be al-
ways satisfied. In addition, users usually have different sensi-
tive degrees of rebuffering time and video quality [46], which
indicates that the same reserved resources for various multicast
groups can lead to different user satisfactions. Therefore,
we analyze the relationship between reserved bandwidth and
computing resources and user satisfaction for each multicast
group, which can help the network controller to make a better
resource reservation scheme to improve user satisfaction.

First, we analyze how reserved bandwidths affect user sat-
isfaction based on observed users’ buffers. Specifically, if the
downlink transmission rate estimated by reserved bandwidths
is larger than the bandwidth resource demand, users’ buffer
lengths can increase; otherwise, users’ buffers will gradually
become empty and rebuffering time will increase. Therefore,
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Fig. 4. User satisfaction over different buffer lengths and rebuffering time.

the gap between the downlink transmission capability and
the bandwidth resource demand is positively correlated with
users’ buffers. To measure how users’ buffers can affect user
satisfaction, we select a part of users’ watching and rating
records from video dataset2, and use the fitting function3 to
form a fitted curve from scattered points, as shown in Fig. 4.

It can be observed that user satisfaction is positively and
negatively exponential with buffer length and rebuffering time,
respectively. To unify these two factors, we first take the neg-
ative of rebuffering time, with lower values indicating longer
rebuffering time, and then use an approximately exponential
function to express the relationship between user satisfaction,
buffer length, and rebuffering time. By using the buffer
length and rebuffing time as a linkage, we can construct a
parameterized sigmoid function to characterize the exponential
relationship between bandwidth resource reservation and user
satisfaction, as follows:

U t
B,g=

1
1+ exp

{
−ξtg

(
mt

gB log
(
1 + ℓtg

)
−Rt

g

)} , (12)

where ℓtg and ξtg are the average signal-to-interference plus
noise ratio and the sensitivity of bandwidth reservation for
multicast group g in window t, respectively. Here, mt

g and
B are the reserved bandwidth number and size for multicast
group g in window t, respectively. When the downlink trans-
mission rate of reserved bandwidths exceeds the bandwidth
resource demand, user satisfaction will quickly increase and
gradually tend to the highest value, and vice versa.

Second, we analyze how reserved VM instances affect
user satisfaction. Specifically, if the transcoding capability
estimated by reserved VM instances exceeds the computing
resource demand, the video transcoding process can be quickly
completed to guarantee that users can watch videos with satis-
fied video quality; otherwise, users will watch videos with low
video quality and experience frequent quality variation. Since
the video quality also has a similar exponential relationship
with user satisfaction [47], we also adopt a parameterized
sigmoid function to characterize the exponential relationship
between VM instance reservation and user satisfaction as
follows:

U t
V,g =

1

1 + exp
{
−ϑt

g

(
nt
gω −Ot

g

)} , (13)

2Video quality assessment: https://live.ece.utexas.edu/research/ LIVEStall-
Study/liveMobile.html

3Mathworks: https://www.mathworks.com/help/optim/ug/lsqcurvefit.html
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where ϑt
g and nt

g represent the sensitivity of VM instance
reservation and the number of reserved VM instances for
multicast group g in window t, respectively. Here, ω is the
computing capacity of one VM instance.

Compared with the standard QoE model [48], our user
satisfaction model has two main differences. Firstly, our user
satisfaction model is established for characterizing users’ long-
term experience in each resource reservation process instead of
real-time experience. The traditional QoE model is especially
effective when we conduct real-time resource allocation. How-
ever, it cannot be directly applied to the long-term resource
reservation process because real-time performance metrics
hardly reflect long-term performance. In our constructed user
satisfaction model, we establish the mathematical relationship
between resource reservation, resource demand, and user sat-
isfaction, which can efficiently guide the resource reservation
process. Secondly, our user satisfaction model includes the
bandwidth reservation satisfaction model and the VM instance
reservation satisfaction model. The front mainly considers the
impact of buffer length and rebuffering time on users’ long-
term satisfaction. The latter mainly considers the impact of
video quality on users’ long-term satisfaction.

VI. PROBLEM FORMULATION

A. System Utility

The system utility is defined to evaluate the performance
of the UDT-assisted resource reservation scheme, including
operation cost, reconfiguration cost, and user satisfaction.

1) Operation cost: The operation cost, U t
O, refers to the

cost of reserved bandwidths and VM instances for all multicast
groups [49] in window t, which can be expressed as

U t
O = ϖ1

Λ∗
t∑

g=1

mt
g +ϖ2

Λ∗
t∑

g=1

nt
g, (14)

where ϖ1 and ϖ2 represent the unit cost of using a bandwidth
and a VM instance, respectively.

2) Reconfiguration Cost: In each resource reservation win-
dow, if the previous resource reservation configuration for
a multicast group cannot satisfy the current dramatically
increasing resource demands, the network controller needs
to configure bandwidths and VM instances for the multicast
group, which incurs reconfiguration cost. The resource release
cost is omitted since this process can be quickly completed
with negligible cost. Based on the above analysis, the recon-
figuration cost, U t

R, can be expressed as

U t
R =

Λ∗
t∑

g=1

ϖ3

[
mt

g −mt−1
g

]+
+ϖ4

[
nt
g − nt−1

g

]+
, (15)

where ϖ3 and ϖ4 denote the unit cost of bandwidth and VM
instance reconfigurations, respectively. Since the clustering
number in the previous resource reservation window may
be less than that in the current window, a part of elements
in vectors Mt−1 and N t−1 is denoted by 0 to guarantee
dimension match, which can be expressed as

mt−1
g = 0, nt−1

g = 0,∀g ∈
[
Λ∗
t−1 + 1,Λ∗

t

]
. (16)

The objective of system utility is to achieve low resource
operation and reconfiguration costs and high user satisfaction.
With Eq. (12)-(15), the system utility is defined as

U t =
1

Λ∗
t

Λ∗
t∑

g=1

(
U t

B,g + δ1U
t
V,g

)
− δ2U

t
O − δ3U

t
R, (17)

where δ1, δ2, and δ3 represent the weighted parameters to
balance each system utility component.

B. Problem Formulation

Since multicast groups’ bandwidth and computing resource
demands are dynamic due to users’ diversified swipe behaviors
and channel conditions, it is paramount to reserve the appro-
priate bandwidth and computing resources for each multicast
group to guarantee a satisfied service quality. In each resource
reservation window, our objective is to maximize the system
utility within the limited bandwidth and computing resources,
and the corresponding optimization problem is formulated as

P0 : max
{mt

g,n
t
g}g∈Ωt

U t (18)

s.t.
∑Λ∗

t

g=1
mt

g ≤ M,∀t ∈ T , (18a)∑Λ∗
t

g=1
nt
g ≤ N, ∀t ∈ T , (18b)

mt
g ∈ Z+,∀g ∈ Ωt, t ∈ T , (18c)

nt
g ∈ Z+,∀g ∈ Ωt, t ∈ T , (18d)

and (16).

Constraints (18a) and (18b) are resource capacity constraints,
which guarantee that the total reserved bandwidths and VM
instances cannot exceed the system capacity.

VII. PROPOSED RESOURCE RESERVATION ALGORITHM

A. Problem Transformation

Problem P0 is a nonlinear integer programming problem. To
solve this problem, we first transform it into two subproblems.
Specifically, since optimization variable mt

g is independent
of optimization variable nt

g , the problem can be decoupled
into two independent minimization subproblems regarding
bandwidth and VM instance reservation. The decoupled sub-
problems P1 and P2 are given by

P1 : min
{mt

g}g∈Ωt

1

Λ∗
t

∑
g∈Ωt

δ3ϖ3

[
mt

g −mt−1
g

]+
+ δ2ϖ1m

t
g

+
1

−1− exp
{
ξtg
(
mt

gB log
(
1 + ℓtg

)
−Rt

g

)} (19)

s.t.
∑
g∈Ωt

mt
g ≤ M,∀t ∈ T , (19a)

mt
g ∈ Z+,∀g ∈ Ωt, t ∈ T , (19b)

mt−1
g = 0,∀g ∈

[
Λ∗
t−1 + 1,Λ∗

t

]
, t ∈ T , (19c)



9

P2 : min
{nt

g}g∈Ωt

1

Λ∗
t

∑
g∈Ωt

δ3ϖ4

[
nt
g − nt−1

g

]+
+ δ2ϖ2n

t
g

+
δ1

−1− exp
{
ϑt
g

(
nt
gω −Ot

g

)} (20)

s.t.
∑
g∈Ωt

nt
g ≤ N, ∀t ∈ T , (20a)

nt
g ∈ Z+,∀g ∈ Ωt, t ∈ T , (20b)

nt−1
g = 0,∀g ∈

[
Λ∗
t−1 + 1,Λ∗

t

]
, t ∈ T . (20c)

Then, we perform continuous processing on variables mt
g

and nt
g . If a continuous optimization problem is convex, the

corresponding discrete optimization problem is also convex
[50]. The objective function of subproblem P1 consists of two
parts, i.e., one related to the exponential term and one related
to the approximately linear term. The former is expressed by
Ψt

g = −1/(1+ exp
{
−ξtg

(
mt

gB log
(
1 + ℓtg

)
−Rt

g

)}
), and its

convexity is related to the range of independent variable mt
g .

Specifically, the second derivative of Ψt
g is shown in Eq. (21).

When mt
g ≥ Rt

g/B log
(
1 + ℓtg

)
, we can have

∂2Ψt
g/∂

2mt
g ≥ 0 and function Ψt

g is convex; otherwise,
function Ψt

g is concave. The latter is expressed by
Γt
g = δ3ϖ3

[
mt

g −mt−1
g

]+
+ δ2ϖ1m

t
g , and it is convex

due to the convexity of [·]+ function [51].
Since function Ψt

g is not always convex in the whole range
of independent variable mt

g , we make an approximation to the
concave part of Ψt

g to transform it into a convex function.
Specifically, when mt

g < Rt
g/B log

(
1 + ℓtg

)
, we utilize a

tangent to approximately substitute the concave part. The slope
of tangent is the first derivative of Ψt

g when mt
g equals to

Rt
g/B log

(
1 + ℓtg

)
, which can be expressed by

κt
g = −1

4
ξtgB log

(
1 + ℓtg

)
. (22)

The intersection of the tangent and the horizontal axis is given
by

btg =
ξtgR

t
g − 2

ξtgB log
(
1 + ℓtg

) . (23)

To guarantee function Ψt
g is always negative, independent

variable mt
g needs to satisfy mt

g > btg . Based on this trans-
formation, approximate function, Ψ̃t

g , can be expressed as a
convex piecewise function, i.e.,

Ψ̃t
g =

{
Ψt

g, m
t
g ≥ Rt

g/B log
(
1 + ℓtg

)
,

κt
gm

t
g − 0.5, btg < mt

g < Rt
g/B log

(
1 + ℓtg

)
.

(24)

Since the addition of convex functions Ψ̃t
g and Γt

g is still
convex and constraints are linear, subproblem P1 is trans-
formed into a convex optimization subproblem P′

1, i.e.,

P′
1 : min
{mt

g}g∈Ωt

1

Λ∗
t

∑
g∈Ωt

Ψ̃t
g + Γt

g (25)

s.t. mt
g > btg, (25a)

(19a), (19b), and (19c).

Similarly, we can transform the exponential term, Ξt
g ., in the

objective function of subproblem P2 into a convex piecewise
function, which can be expressed as

Ξ̃t
g =

{
Ξt
g, n

t
g ≥ Ot

g/ω,

κ̂t
gn

t
g − 0.5, b̂tg < nt

g < Ot
g/ω,

(26)

where κ̂t
g = − 1

4ϑ
t
gω and b̂tg =

ϑt
gO

t
g−2

ϑt
gω

. The approximately

linear term, Γ̂t
g , in the objective function P2 is also convex due

to the max function. Since the addition of convex functions Ξ̃t
g

and Γ̂t
g is still convex and constraints are linear, subproblem

P2 is transformed into a convex optimization subproblem P′
2,

which can be expressed as

P′
2 : min
{nt

g}g∈Ωt

1

Λ∗
t

∑
g∈Ωt

Ξ̃t
g + Γ̂t

g (27)

s.t. nt
g > b̂tg, (27a)

(20a), (20b), and (20c).

Based on the linear approximation on the concave part, the
original optimization problem P0 is transformed into a convex
optimization problem.

B. Fast Resource Reservation Algorithm

Since the local optimal point is also the global optimal point
for a convex optimization problem, we design a FS algorithm
to find the local optimal bandwidth and VM instance reser-
vation variables, i.e.,

{
mt

g

}
g∈Ωt

and
{
nt
g

}
g∈Ωt

. Specifically,
each multicast group is first assigned

⌈
btg
⌉

bandwidths and⌈
b̂tg

⌉
VM instances. Then, in each iteration, the unassigned

bandwidths and VM instances are sequentially assigned to
the multicast group that can obtain the highest values of
objective functions in subproblems P′

1 and P′
2, respectively.

If the objective function value in the previous iteration is
higher than that in the current iteration, the iteration process is
terminated and local optimal resource reservation variables are
the variables in the previous iteration. The specific algorithm
is presented in Algorithm 1.

∂2Ψt
g

∂2mt
g

=
exp

{
−ξtg

(
mt

gB log
(
1 + ℓtg

)
−Rt

g

)} (
ξtgB log

(
1 + ℓtg

))2(
1 + exp

{
−ξtg

(
mt

gB log
(
1 + ℓtg

)
−Rt

g

)})3 (
1− exp

{
−ξtg

(
mt

gB log
(
1 + ℓtg

)
−Rt

g

)})
. (21)



10

Algorithm 1: Fast Scheduling (FS) Algorithm

1 Initialize the objective functions U t(P′
1) and U t(P′

2).
2 Input Ωt,

{
ℓtg
}
g∈Ωt

,
{
Rt

g

}
g∈Ωt

,
{
Ot

g

}
g∈Ωt

,
⌈
btg
⌉
,⌈

b̂tg

⌉
, M , N , Λ∗

t−1, and all weighted parameters.
3 Output

{
mt

g

}
g∈Ωt

and
{
nt
g

}
g∈Ωt

.
4 for g ∈ Ωt do
5 Multicast group g is assigned

⌈
btg
⌉

bandwidths and⌈
b̂tg

⌉
VM instances;

6 Variables mt
g and nt

g take the values of
⌈
btg
⌉

and⌈
b̂tg

⌉
, respectively;

7 end
8 Calculate the number of unassigned bandwidths and

VM instances, i.e., M̃ = M −
∑

g∈Ωt

⌈
btg
⌉

and

Ñ = N −
∑

g∈Ωt

⌈
b̂tg

⌉
;

9 for m = 1 : M̃ do
10 for g ∈ Ωt do
11 Assign one bandwidth to multicast group g,

and calculate U t(P′
1,g);

12 end
13 Update variable mt

g by mt
g = mt

g + 1 with the
minimum value of the objective function, i.e.,
g∗ = argmin

g
U t(P′

1,g);

14 if U t(P′
1)

(m) ≥ U t(P′
1)

(m−1) then
15 Stop the iteration and return

{
mt

g

}
g∈Ωt

;
16 end
17 end
18 for n = 1 : Ñ do
19 for g ∈ Ωt do
20 Assign one VM instance to multicast group g,

and calculate U t(P′
2,g);

21 end
22 Update variable nt

g by nt
g = nt

g + 1 with the
maximum value of the objective function, i.e.,
g∗ = argmax

g
U t(P′

2,g);

23 if U t(P′
2)

(n) ≥ U t(P′
2)

(n−1) then
24 Stop the iteration and return

{
nt
g

}
g∈Ωt

;
25 end
26 end

C. Computational Complexity Analysis

The proposed FS algorithm needs to find the local optimal
points for bandwidth and VM instance reservation. The analy-
sis of computational complexity is as follows. First, the com-
putational complexity of initial resource reservation for each
multicast group is O (Λ∗

t ). Then, the computational complexity
of assigning the rest bandwidths is O (m̃Λ∗

t ), where m̃ is a
positive value less than M̃ since the bandwidth assignment
can be momentarily terminated before all bandwidths are
completely assigned. Next, the computational complexity of
assigning the rest VM instances is O (ñΛ∗

t ), where ñ is a
positive value less than Ñ since the VM instance assignment

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value Parameter Value
M 15 T 5 min ϖ1 0.5
B 2 MHz ρ 50 ϖ2 0.5
N 10 C 8 ϖ3 0.7
ω 2 G Cycle/s F1 150 ϖ4 1
K 60 F2 5 δ1 1.5
V 1000 λ 0.4 δ2 0.3
µ 2 G Cycle/Mb λ̂ 0.3 δ3 0.3

can be momentarily terminated before all VM instances are
completely assigned. Finally, the overall computational com-
plexity of FS algorithm is O (Λ∗

t + m̃Λ∗
t + ñΛ∗

t ).

VIII. SIMULATION RESULTS

A. Simulation Setup

We conduct extensive simulations on the real-world dataset
to evaluate the performance of the proposed UDT-assisted
resource reservation scheme. The main simulation parameters
are presented in Table I. The key components of the simulation
are introduced as follows.

We adopt the short video streaming dataset4 to obtain users’
swipe behaviors and the user satisfaction dataset1 to fit the
user satisfaction function. We sample 1000 short videos from
the YouTube 8M dataset5, which includes 8 video types, i.e.,
Entertainment, Games, Food, Sports, Science, Dance, Travel,
and News. Each video has a duration of 15 sec and is
encoded into four versions by the H. 265 encoder. We consider
the scenario where two BSs are deployed at the University
of Waterloo (UW) campus and users’ initial positions are
randomly and uniformly generated around two BSs, as shown
in Fig. 5. Each user moves along a prescribed path within the
UW campus at a speed of 2∼5 km/h, and the corresponding
channel path loss is obtained by the propagationModel at
Matlab. The transmission power and noise power are set to
27 dBm and -174 dBm, respectively.

Since the dimensions of different UDT data attributes are
different, we construct four Autoencoder models for data
compression. Take the Autoencoder model for the compression
of locations as an example, the encoder is composed of two
Conv2D layers, each using a ReLU activation function and
a ’same’ padding. The first Conv2D layer has 32 filters with
a kernel size of (1, 3), while the second Conv2D layer has
64 filters with the same kernel size. After the Conv2D layers,
a Flatten layer is applied to transform the multi-dimensional
tensor into a one-dimensional tensor. The flattened tensor is
then passed through a Dense layer with 60 neurons and a linear
activation function, resulting in a compressed representation
of input data in the latent space. The decoder is designed
to reconstruct input data from the latent space representation.
It starts with a Dense layer having 60 × 150 × 64 neurons,
followed by a Reshape layer to convert the tensor back to
the shape (60, 150, 64). Then, a Conv2DTranspose layer

4ACM MM Grand Challenges: https://github.com/AItransCompetition/Short-
Video-Streaming-Challenge/tree/main/data

5YouTube 8M dataset: https://research.google.com/youtube8m/index.html
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Fig. 5. The simulation scene, where BSs and users are represented by red
and gray icons, respectively.

with 32 filters, kernel size (1, 3), ReLU activation function,
and ’same’ padding is applied. Finally, the output layer is
another Conv2DTranspose layer with 2 channels (matching
the input data), kernel size (1, 3), linear activation function,
and ’same’ padding. The compressed UDT data is then input
to DDQN to determine the clustering number. The detailed
Autoencoder and DDQN parameters are shown in Table II
and III, respectively.

We compare the proposed UDT-assisted resource reserva-
tion scheme with the following benchmark schemes:

• Without DT (WDT): Multicast groups are constructed and
updated based on users’ preferences and locations. The
resource demand prediction relies on historical video traf-
fic distribution, while the user satisfaction model selects
the same model structure as the proposed UDT-assisted
resource reservation scheme. Bandwidth and computing
resource reservations are based on predicted resource
demands without considering users’ swipe behaviors.

• Density-based spatial clustering of applications with
noise [52] with FS algorithm (DBSCAN-FS): UDTs
are first constructed to store users’ historical data, but
the user clustering is based on the DBSCAN scheme.
The resource demand prediction, user satisfaction model,
and resource scheduling algorithm are the same as the
proposed UDT-assisted resource reservation scheme.

• DT-based user clustering, and branch- and bound-based
scheduling algorithm (DT-BBS): UDTs are first con-
structed to store users’ historical data. The user clustering,
resource demand prediction, and user satisfaction model
are the same as the proposed UDT-assisted resource
reservation scheme. However, the resource scheduling is
based on the 0-1 branch and bound method [53] that
can obtain the optimal scheduling decisions but with high
computational complexity and storage consumption.

• DT-based user clustering, and branching dueling Q-
network-based scheduling algorithm (DT-BDQN): UDTs
are first constructed to store users’ historical data. The
user clustering, resource demand prediction, and user

TABLE II
AUTOENCODER PARAMETERS

Model Layer name NN units Activation Padding
Compression
for channel
conditions,

swipe
timestamps,
and prefers

Conv1D 32, 3 ReLu same
Conv1D 64, 3 ReLu same
Dense 60 Linear /
Dense 60× 64 ReLu /

Conv1DTranspose 32, 3 ReLu same
Conv1DTranspose 150/9e3/160, 3 Linear same

Compression
for locations

Conv1D 32, 1× 3 ReLu same
Conv1D 64, 1× 3 ReLu same
Dense 60 Linear /
Dense 5.76e5 ReLu /

Conv1DTranspose 32, 1× 3 ReLu same
Conv1DTranspose 2, 1× 3 Linear same

TABLE III
DDQN PARAMETERS

Parameter Value Parameter Value
Memory size 2000 Initial exploration rate 1
Discount rate 0.95 Exploration decay rate 0.995

Episode length 90 NN layer connection FC
Number of Episodes 300 Number of hidden layers 3

Learning rate 0.001 Activation function ReLU

Mini-batch size 32 Number of neurons 512×256×
128×64×10

satisfaction model are the same as the proposed UDT-
assisted resource reservation scheme. However, the re-
source scheduling is based on the BDQN algorithm [54]
that can efficiently solve the high-dimensional resource
scheduling problem by splitting the action space.

B. Clustering Performance Evaluation

In this section, we will compare the clustering number, the
user density in each multicast group, and the convergence
performance of proposed clustering algorithm, respectively.

As shown in Fig. 6, we present the clustering number dis-
tribution in the boxplot for 90 resource reservation windows.
It can be observed that the proposed scheme can achieve
lower first-quartile, median, third-quartile, and maximum val-
ues compared with other schemes. Our proposed scheme
demonstrates superior performance with relatively minimal
variations, while the WDT scheme exhibits a larger fluctuation.
This can be attributed to the unique capability of UDTs
to effectively extract users’ swipe probability distributions.
Consequently, our proposed scheme empowered by UDTs
can well adapt to changes in swipe behaviors and network
conditions. Overall, the proposed scheme offers a more robust
and efficient solution for managing multicast groups in the
face of dynamic changes in user statuses.

As illustrated in Fig. 7, we present the user density of pro-
posed UDT-assisted clustering scheme during each resource
reservation window. The darker the color, the higher the user
density, and vice versa. Overall, the variation trend of user
density in each multicast group is relatively gradual. This
can be attributed to two primary reasons. First, reconfiguring
bandwidth and computing resources for a multicast group
entails additional network overheads. Second, to accommodate
diverse user demands and preferences, the number of users
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within a multicast group is inherently limited. Furthermore,
we observe that certain multicast groups exhibit significantly
higher user density than others. This phenomenon arises
because the majority of users own similar characteristics. By
clustering the similar users for multicast transmission and
video transcoding, network traffic burden can be effectively
relieved.

As shown in Fig. 8, we present the convergence curve
of the DDQN-based clustering algorithm with and without
autoencoder for determining the number of multicast groups.
We conducted three trials of training to draw the corresponding
envelope area and mean curve. Each episode consists of 90
steps, and the corresponding reward is the average reward
for all steps within an episode. It can be observed that
as the number of episodes increases, the reward of DDQN
with autoencoder gradually grows larger. When the number
of episodes approaches nearly 70, the reward of DDQN
with autoencoder converges to a stable state, indicating that
the DDQN-based clustering algorithm with autoencoder can
effectively extract user similarity from user statuses to deter-
mine the number of multicast groups. The reason is that the
autoencoder can compress high-dimensional UDT data into a
low-dimensional latent space through neural network training,
and minimize reconstruction error through a loss function. The
lower-dimensional latent space can capture essential intrinsic
features of UDT data, which can help DDQN algorithms
efficiently mine user similarity for user clustering.
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Fig. 8. A comparison between DDQN training with autoencoder and without
autoencoder.

C. Abstracted Swipe Probability Distribution

As illustrated in Fig. 9, we present the swipe probability
distribution extracted via UDTs across various resource reser-
vation windows, where different line styles denote different
multicast groups. Leveraging users’ status information stored
in UDTs, we can infer their swipe probability distributions
and cluster them with similar statuses into the same multi-
cast group. Fig. 9(a) reveals that users in multicast group 1
demonstrate similar swipe probability distributions as those
in multicast group 2 during the initial phase, but a notice-
able divergence ensues over time. This suggests that UDTs
can effectively differentiate swipe behaviors of various users
from a global perspective, thereby facilitating more precise
information provision for resource reservation. Fig. 9(b) and
(c) exhibit the swipe probability distributions among three
multicast groups. An overlap of swipe probabilities on certain
types of videos occurs, indicating that over time, user behavior
with respect to swipe probabilities for different types of videos
gradually converges. This also implies a diminishing influence
of video type on the swipe probability. Such information can
be effectively captured by UDTs, providing valuable input to
the network controller for more accurate resource reservation.

D. System Utility Performance Evaluation

As illustrated in Fig. 10, we first present the performance
comparison of various system utility components under differ-
ent schemes. With respect to bandwidth and VM reservation
satisfaction, the proposed scheme can achieve a relatively high
satisfaction level. Especially, BRS exhibits less fluctuation
compared with VMRS. This is because the number of reserved
VMs directly affects the speed of video transcoding, leading
to variations in video quality and buffer length. Consequently,
when the number of reserved VMs is insufficient, user sat-
isfaction tends to fluctuate more significantly. In comparison
to other schemes, WDT has the lowest satisfaction level. This
is attributed to the lack of UDTs, which disables the network
controller from swiftly and accurately analyzing users’ similar-
ities from their historical data to precisely construct multicast
groups. As a result, bandwidth and VM instance reservation
cannot meet the actual resource demands of each multicast
group, thereby leading to lower satisfaction.
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Fig. 9. Swipe probability distribution abstracted by DT.
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(b) VM Reservation Satisfaction (VMRS)
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(c) Bandwidth Operation Cost (BOC)
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(e) Bandwidth Reconfiguration Cost (BRC)
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Fig. 10. The performance comparison of each component in the system utility.

In terms of bandwidth and VM operation cost, WDT and
DBSCAN-FS schemes can achieve a lower resource operation
cost compared with the proposed UDT-assisted resource reser-
vation scheme, as shown in Fig. 10(c)(d). This is because these
two schemes mainly rely on video traffic distribution to predict
each multicast group’s resource demand without incorporating
the impact of users’ swipe behaviors. In each resource reser-
vation window, resources are reserved as close as possible
to the predicted resource demands, which can effectively
reduce resource operation cost. However, user swipe behaviors
are dynamic and differentiated, which can cause frequent
resource demand fluctuations. Without considering the impact
of users’ swipe behaviors, the resource demand prediction can
be not accurate enough, which can cause frequent resource
reconfiguration and rebuffering events. Therefore, although

these two schemes can achieve a lower resource operation
cost, they also sacrifice more resource reconfiguration costs
and degrade user satisfaction.

Then, we compare the system utility corresponding to dif-
ferent schemes in Fig. 11. It can be observed that the proposed
scheme can achieve the highest median value, the second
highest first quartile, and similar third quartile, compared
with other schemes. Furthermore, our proposed scheme owns
smaller interquartile range compared with DT-BDQN scheme.
The reason that DT-BBS scheme can obtain the almost highest
system utility is because DT-BBS scheme employs the same
resource demand prediction method as the proposed scheme
but a different resource reservation strategy, i.e., BBS. As
a classical optimization method, BBS can be well applied
to solve the formulated 0-1 integer programming problem
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TABLE IV
PERFORMANCE METRIC COMPARISON

Proposed WDT DBSCAN-FS DT-BBS DT-BDQN
BRS 0.99 0.74 0.87 0.99 0.98

VMRS 0.91 0.63 0.75 0.93 0.91
BOC 2.74 2.1 2.45 2.85 2.8

VMOC 2.57 2.11 2.29 2.59 2.63
BRC 0.21 0.38 0.32 0.22 0.2

VMRC 0.25 0.5 0.4 0.23 0.27
Average

system utility 0.36 -0.34 -0.04 0.37 0.29

Average
runtime (s) 1.54 0.74 1.15 9.63 2.12

to obtain the optimal solution. Therefore, it can be deemed
as the performance upper bound. However, it also brings
huge computational complexity due to the exploration of
numerous subproblems at each node of the decision tree,
and storage consumption due to the maintenance of a list of
pending nodes for unresolved subproblems. As can be seen
in Table IV, although the proposed UDT-assisted resource
reservation scheme exhibits a system utility that is 0.01 lower
than DT-BBS, it compensates with a substantially reduced
runtime from 9.63 sec to 1.54 sec.

In addition, the reason that DT-BDQN scheme cannot
always maintain a high system utility in the long-term resource
reservation process is due to two main reasons, i.e., the
inaccurate value function approximation in complex network
environments, and the quality of training data. Specifically,
while the deep neural networks used in the BDQN algorithm
are robust, they may fail to accurately capture the true state-
action value function, particularly when users’ swipe behaviors
exhibit distinct spatiotemporal variations. Furthermore, if the
training data does not fully cover the state space, the BDQN
algorithm may fail to make optimal decisions. As can be seen
in Table IV, the proposed UDT-assisted resource reservation
scheme owns a higher average system utility and lower average
runtime, compared with DT-BDQN scheme.

Finally, we compare the system performance metrics under
different schemes, including average BRS, VMRS, BOC,
VMOC, BRC, VMRC, system utility, and runtime as shown
in Table IV. The best performance corresponding to each
metric is highlighted in bold. As can be observed, although

our proposed scheme cannot achieve the best performance
in all metrics, it ensures a high average BRS, VMRS, and
system utility. Especially, the system utility is very close to
the DT-BBS scheme, significantly higher than that of the
WDT and DBSCAN-FS schemes, but the required system
runtime is much lower than that of the DT-BBS scheme.
This demonstrates that our proposed scheme can quickly adapt
to the dynamics of the network conditions and users’ swipe
behaviors to make timely adjustments to resource reservation.

IX. THE GENERALIZABILITY OF UDT-ASSISTED
RESOURCE RESERVATION APPROACH

The proposed approach plays an essential role in analyzing
user data and network data, capable of providing important
data features to assist the resource reservation process. The
data analysis methods used in this work can also be applied
to other applications and domains. For instance, due to the
highly dynamic nature and cooperation requirements of ve-
hicular networks, the proposed UDT-assisted user clustering
algorithm can compress vehicles’ status information such as
trajectories, speed, task arrival rates, computing capacities,
etc., into low-dimensional data and complete fast and accurate
vehicle clustering to improve cooperation performance. In
federated learning, since one global model is hardly trained
with high accuracy, similar users can be clustered in the
same group to train multiple global models [55], [56]. To
improve the model training speed and accuracy, we can utilize
UDTs to analyze users’ features such as behavior patterns
and preferences, and cluster users with similar features into
the same model training group. Additionally, UDTs can help
to abstract users’ traffic distribution, task arrival probability
distribution, resource demands, etc., to facilitate accurate and
tailored resource reservation.

X. CONCLUSION

In this paper, we have studied a novel resource management
issue to enhance the MSVS performance. We have proposed
a UDT-assisted resource reservation scheme to abstract the
swipe probability distribution and recommended video list for
the bandwidth and computing resource demand prediction.
Furthermore, we have proposed a user satisfaction model by
taking the user’s personalized preference and service sensitiv-
ity into account. A low-complexity resource scheduling algo-
rithm has been designed to determine the joint bandwidth and
computing resource reservation. The proposed UDT-assisted
resource reservation scheme can be applied to analyze the
user’s behavior pattern and integrate its impact on resource
management in interactive media scenarios. For future work,
we will investigate the joint optimization of the segment-
level caching order and resource allocation based on distilled
information from UDTs to further improve user satisfaction.
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