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Abstract—Beam alignment (BA) is to ensure the transmitter
and receiver beams are accurately aligned to establish a reli-
able communication link in millimeter-wave (mmwave) systems.
Existing BA methods search the entire beam space to identify
the optimal transmit-receive beam pair, which incurs significant
BA latency on the order of seconds in the worst case. In this
paper, we develop a learning algorithm to reduce BA latency,
namely Hierarchical Beam Alignment (HBA) algorithm. We first
formulate the BA problem as a stochastic multi-armed bandit
problem with the objective to maximize the cumulative received
signal strength within a certain period. The proposed algorithm
takes advantage of the correlation structure among beams such
that the information from nearby beams is extracted to identify
the optimal beam, instead of searching the entire beam space.
Furthermore, the prior knowledge on the channel fluctuation is
incorporated in the proposed algorithm to further accelerate
the BA process. Theoretical analysis indicates that the proposed
algorithm is asymptotically optimal. Extensive simulation results
demonstrate that the proposed algorithm can identify the optimal
beam with a high probability and reduce the BA latency from
hundreds of milliseconds to a few milliseconds in the multipath
channel, as compared to the existing BA method in IEEE
802.11ad.

Index Terms – mmwave, beam alignment, correlation structure,
prior knowledge, multi-armed bandit.

I. INTRODUCTION

The ever-increasing data traffic driven by various emerging
data-hungry applications, such as high-definition mobile video
streaming, cordless virtual reality gaming and wireless fiber-
to-home access, has placed a growing strain on the creaking
traditional cellular networks. Millimeter-wave (mmwave) com-
munication is envisioned as the most promising technology to
accommodate the skyrocketing data traffic through harnessing
multi-GHz bandwidths. Multiple standardization efforts, such
as IEEE 802.11ad [1], [2] and ongoing IEEE 802.11ay [3],
[4], and large-scale field-trials have paved the road for the
commercialization of mmwave communications.

In mmwave communication systems, narrow directional
beams are adopted at both the transmitter and receiver to
compensate for the huge attenuation loss. Since beams are
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Fig. 1. A beam alignment example with 16 beams. The well-aligned
transmitter and receiver beams are represented by solid green beams.

narrow, the communication is possible only when the trans-
mitter and receiver beams are properly aligned [5], as shown
in Fig. 1. Beam alignment (BA) is such a process to identify
the optimal transmit-receive beam pair which attains the max-
imum received signal strength (RSS). Beam misalignment can
dramatically reduce the link budget and drop the throughput
from multiple Gbps to a few hundred Mbps [6]. As a key
process in mmwave communications, BA is of significance
to achieve multi-gigabit wireless transmission. To identify the
best beam pair, a naive exhaustive search method scans all
the combinations of the transmitter and receiver beams, which
results in significant BA latency. Yet, a low-latency BA process
is imperative for practical mmwave systems to accommodate
real-time applications. Moreover, in mobile scenarios, user
mobility changes the beam direction and thus frequently in-
vokes BA, which further exacerbates the latency. To accelerate
the beam search, IEEE 802.11ad protocol decouples the BA
process into two steps. Firstly, the transmitter starts with a
quasi-omnidirectional beam and the receiver scans the beam
space for the best receiver beam. Secondly, the transmitter
scans the beam space for the best transmitter beam while
keeping the receiver quasi-omnidirectional. Still, the existing
BA method in IEEE 802.11ad may take up to seconds with a
large number of candidate beams [7]. To reduce BA latency,
can we identify the optimal beam without searching the entire
beam space?

In the literature, there are some initial research efforts to
address this challenge. Utilizing the sparse characteristic of
the mmwave channel, Marzi et al. developed a compressed
sensing BA method [8]. Some out-of-band information, e.g.,
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the Wi-Fi signal, is exploited to identify the optimal beam in
[9]. These works perform BA with the assistance of excessive
extra information besides RSS. Surprisingly, a crucial feature,
the correlation structure among beams, is ignored in previous
works. In fact, the RSS of nearby beams is similar which
means nearby beams are highly correlated. In this way, if a
beam does not perform well, its nearby beams are highly likely
to perform worse either. The measurement of one beam not
only reveals information about itself, but also its nearby beams.
Hence, the information from nearby beams can be learned to
identify the optimal beam without searching the entire beam
space.

In this paper, we propose a fast BA algorithm, named
Hierarchical Beam Alignment (HBA), by utilizing the cor-
relation structure among beams and the prior knowledge on
the channel fluctuation. In the BA problem, fast BA means
identifying the optimal beam with the minimum latency. This
problem boils down to sequentially selecting beams to maxi-
mize the cumulative RSS within a certain period, which can be
formulated as a stochastic multi-armed bandit (MAB) problem.
To solve this problem efficiently, two unique characteristics
are incorporated in our proposed algorithm. Firstly, theoretical
analysis indicates that the correlation structure among beams
in the multipath channel can be characterized by a multimodal
function. Utilizing this correlation structure, the proposed
algorithm intelligently narrows the search space to identify
the optimal beam. Secondly, incorporating the prior knowl-
edge on the channel fluctuation to appropriately accommodate
reward uncertainty, the proposed algorithm avoids excessive
exploration and further accelerates the BA process. Theoretical
analysis shows that the regret of HBA is bounded and thus
the proposed algorithm is asymptotically optimal. Extensive
simulation results demonstrate that HBA can identify the
optimal beam with a high probability and reduce the number
of beam measurements in the multipath channel, even with
coarse prior knowledge. Particularly, the proposed algorithm
reduces the BA latency by orders of magnitude as compared
to the BA method in IEEE 802.11ad.

Our contributions in this paper are summarized as follows.

• We formulate the BA problem as a stochastic MAB
problem, in which the objective is to sequentially select
beams to maximize cumulative RSS within a certain
period;

• We prove that the mean RSS function over the beam
space follows a multimodality structure in the multipath
channel, which characterizes the correlation structure
among nearby beams;

• We propose a fast BA algorithm to accelerate beam
search by exploiting the correlation structure and the prior
knowledge on the channel fluctuation;

• We derive a sublinear analytical upper bound on the
cumulative regret, i.e., O(

√
T log T ), indicating the pro-

posed algorithm is asymptotically optimal.

The remainder of this paper is organized as follows. Section
II reviews related works. The system model and problem
formulation are presented in Section III. Section IV proposes a
fast BA algorithm. Section V analyzes the regret performance

of the proposed algorithm. Simulation results are given in
Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

The BA problem in mmwave systems garners much atten-
tion recently. Zhou et al. elaborated the challenges of the ran-
dom access protocol in the BA process in dense networks [1].
In addition, the authors developed possible solutions from the
MAC perspective. Utilizing the sparse characteristic that only a
few paths exist in the mmwave channel, a compressed sensing
solution can align beams with a low beam measurement
complexity of O(L logN), where L is the number of channel
paths and N is the number of beams [8]. The approach suits
for mmwave systems where the accurate phase information is
available. In another line of research, Wang et al. developed
a fast-discovery multi-resolution beam search in [10], which
probes the wide beam first and continues to narrow beams
until identifying the best beam. While feasible, the method
needs to adjust the beam resolution at every step. On the other
hand, Xiao et al. proposed a hierarchical codebook search
method to efficiently identify the optimal beam by jointly
utilizing sub-array and deactivation techniques [11]. Moreover,
they provide the closed-form expression of the hierarchical
codebook. Sun et al. further developed an orthogonal pilot
based low-overhead BA method for the multiuser mmwave
systems [12]. Another solution exploits some out-of-band
information, i.e., the Wi-Fi signal, to identify the optimal beam
[9]. Similar works extract spatial information from sub-6 GHz
signals to assist BA as well as boost throughput [13], [14].
Recent efforts leverage the multi-armed beams capability to
improve BA performance. Hassanieh et al. proposed a fast BA
protocol through scanning multiple directions simultaneously
[7]. A similar method, which treats the problem of identifying
the optimal beam as that of locating the error in linear block
codes, is developed to reduce BA complexity [15]. The works
in [1], [7]–[15] provide possible solutions for the BA problem
in various scenarios. Different from prior works, our work
considers the correlation structure among nearby beams to
assist BA process.

MAB theory has been widely applied in wireless networks,
such as power allocation in small base stations [16] [17],
content placement in edge caching [18], [19], task assignment
in mobile crowdsourcing [20] and mobility management in
mobile edge computing [21]. Very recently, the BA problem is
studied based on MAB theory, which makes online decision to
strike the balance between exploitation and exploration. Gulati
et al. applied the celebrated upper confidence bound (UCB)
algorithm in beam selection in traditional MIMO systems [22].
Sim et al. developed an online beam selection algorithm in
mmwave vehicular networks based on contextual bandit theory
[23]. This work learns information from real-time environment
to enhance the throughput of mmwave networks. A pioneering
work in [6] exploits a unimodal structure among beams to
accelerate the BA process in static environments. This solution
focuses on aligning beams in the single-path channel. Another
work developed a distributed BA search method based on
adversarial bandit theory [24]. These works provide highly
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Fig. 2. The point-to-point mmwave system.

relevant insights on the BA problem in mmwave networks
via bandit learning theory. However, they do not provide
a method to quickly and accurately align beams, especially
in complicated multipath channels. Different from existing
works, we focus on leveraging the correlation structure and
prior knowledge to accelerate the BA process in the multipath
channel with only RSS.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Beam Alignment Model

As shown in Fig. 2, we consider a point-to-point mmwave
system in a static environment, where the transmitter is
equipped with N antennas. Uniform linear arrays are assumed
in both the transmitter and receiver, and each antenna element
is connected to a phase shifter to form narrow directional
beams [25]. In the BA process, the receiver keeps quasi-
omnidirectional while the transmitter scans the beam space
to identify the best one. We consider the sparse clustered
channel model, i.e., Saleh-Valenzuela model [26]. Suppose
that the channel consists of L paths: one dominant line-of-
sight (LOS) path and L − 1 non-line-of-sight (NLOS) paths,
due to strong reflections from the ground or side walls. The
channel array response between the transmitter and receiver
can be represented as a mixture of sinusoids,

hn = g0e
j 2πd
λ nϑ0 +

L−1∑
l=1

gle
j 2πd
λ nϑl (1)

where 0 ≤ n ≤ N − 1. Let d and λ denote the array element
spacing and carrier wavelength, respectively. Typically, d =
λ/2. Let g0 and gl represent the channel gains of the LOS path
and the l-th NLOS path, respectively. Note that the channel
gain of the NLOS path is around 10 dB weaker than that of the
LOS path [27]. Let θ denote the physical angle of the channel.
The corresponding spatial angle of the channel is denoted by
ϑ = cos θ. We vectorize the sinusoids ej2πdnϑ/λ, 0 ≤ n ≤
N − 1 into a vector x(ϑ) ∈ CN×1. Thus, the channel vector
is given by

h = g0x(ϑ0) +

L−1∑
l=1

glx(ϑl) ∈ CN×1. (2)

Since we consider a static environment, the channel vector
keeps invariant during the BA process.

Let W = [w1,w2, ...,wN ] ∈ CN×N denote the unitary
discrete Fourier transform (DFT) matrix whose columns con-
stitute the transmit beam space, given by

W =
1√
N

[x(ω1),x(ω2), ...,x(ωN )]. (3)

In (3), ωi = 2i−N
N represents the spatial angle of the i-th

beam [8]. According to the BA method in IEEE 802.11ad, the
transmitter scans all the beams in W, while the receiver beam
keeps omni-directional. The received signal vector is given by

y =
√
PhHW + n (4)

where n denotes the additive Gaussian white noise vector. Let
NoW denote the mean noise power, where W is the channel
bandwidth and No is the noise power density.

The problem of identifying the optimal transmit beam
boils down to identifying the element with the maximum
magnitude within y. Hence, to identify the optimal beam,
the BA method in IEEE 802.11ad protocol needs to measure
the RSS of all the transmit beams, leading to a high beam
measurement complexity [7]. Searching the entire beam space
incurs significant BA latency, especially when the beam space
is large.

B. Problem Formulation

In this subsection, the BA problem is formulated as a
stochastic MAB problem for stationary environments. Con-
sider a time slotted system with T time slots of equal duration.
In time slot t ∈ {1, 2, ..., T}, the transmitter selects a beam
to transmit data. Let B = {b1, b2, ..., bN} denote the set of
candidate beams, which can be considered as arms in the
bandit theory. At the beginning of time slot t, the transmitter
selects a beam denoted by bt ∈ B. At the end of time slot t, the
transmitter observes noisy RSS from the receiver, i.e., r (bt),
which is considered as a reward. Rigorously, the reward is a
random variable due to the channel fluctuation, such as shadow
fading and the disturbance effect. For simplicity, we assume
that the reward follows a Gaussian distribution with a variance
σ2. In other words, σ2 also represents the variance of the
channel fluctuation, which is utilized as prior knowledge in the
following algorithm design. Note that the proposed algorithm
can also be applied to non-Gaussian distribution settings, as
validated in Section VI.

Let b1:t = {b1, b2, ..., bt} denote the sequentially selected
beams up to time slot t. The set of corresponding sequential
rewards is represented by r1:t = {r(b1), r(b2), ..., r(bt)}. In
the MAB setting, a sequential beam selection policy is how the
transmitter selects the next beam based on previously selected
beams b1:t and observed rewards r1:t. Let Π be the set of all
possible sequential beam selection policies. Our objective is to
find a policy, π ∈ Π, that maximizes the expected cumulative
reward (RSS) within a given time horizon of T slots, i.e.,∑T
t=1 r(b

t). This objective conforms our target since a fast BA
algorithm is to identify the optimal beam with the minimum
latency.

In the MAB theory, expected cumulative regret is commonly
adopted to evaluate the performance of a given policy, which
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denotes the expected cumulative difference between the reward
of the selected beam and the maximum reward achieved by
the optimal beam. The expected cumulative regret is defined
as

Rπ(T ) = E

[
T∑
t=1

(
r(b?)− r(bt)

)]
= T · E [r (b?)]−

∑
bi∈B

Nπ
bi(T )E [r (bi)]

(5)

where b? represents the optimal beam and Nπ
bi

(T ) denotes
the number of times that bi has been selected up to time slot
T . Hence, maximizing the cumulative reward is equivalent to
minimizing the expected cumulative regret within T [6], which
can be expressed as

P1 :min
π∈Π

Rπ(T )

s.t.
∑
bi∈B

Nπ
bi(T ) ≤ T (6a)

Nπ
bi(T ) ∈ Z,∀bi ∈ B. (6b)

The preceding MAB problem P1 can be solved by the
celebrated UCB algorithm [28]. However, this problem has
two characteristics that were not utilized in the UCB algorithm.
Firstly, since the RSS of nearby beams is highly correlated, the
correlation information from nearby beams can be utilized to
select the next beam efficiently. Secondly, the prior knowledge
on the channel fluctuation reflects the information of environ-
ment, which can be exploited to appropriately accommodate
reward uncertainty such that the BA process can be further
accelerated. In the following, we will leverage these two
characteristics to accelerate the convergence speed, and hence
reduce BA latency.

IV. FAST BEAM ALIGNMENT

In this section, we first analyze and validate that the mean
reward (RSS) over the beam space follows a multimodality
structure, which characterizes the inherent correlation among
beams. Next, by exploiting the correlation structure and the
prior knowledge, a fast BA algorithm is proposed to identify
the optimal beam.

A. Correlation Structure

Consider a cyclic undirected graph G = (B, E) whose
vertices B stand for the beams. Let (bi, bi+1) ∈ E denote the
edge that connects neighboring beams bi and bi+1. In addition,
(bN , b1) ∈ E indicates that the last beam bN and the first beam
b1 are neighbors since their beam orientations are close to each
other. The unimodality structure is defined as follows.

Definition 1: (Unimodality) Let bi? denote the optimal
beam in G. The unimodality structure indicates that, ∀bi ∈ B,
there exists a path, (bi, bi+1, ..., bi?), along which the mean
reward is strictly increasing.

In other words, the unimodality structure means that there is
no local optimal beam over the beam space. Next, we aim to
show that the correlation structure among beams follows above
unimodality structure. Consider the single-path channel, where
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Fig. 3. The RSS function over the beam space in a two-path channel with
128 beams. The peak caused by the LOS link is around 10 dB higher than
that by the NLOS link.

g and ϑ represent the channel gain and channel spatial angle
of the path, respectively. With (4), the mean RSS is given by

E [r(bi)] = P
∣∣hHwi

∣∣2 +NoW

=
Pg2

N

∣∣xH(ϑ)x(ωi)
∣∣2 +NoW

=
Pg2

N

∣∣∣∣∣
N−1∑
n=0

ej
2πd
λ n(ωi−ϑ)

∣∣∣∣∣
2

+NoW

=
Pg2

N
D (ωi − ϑ) +NoW, ∀bi ∈ B

(7)

where

D(x) =
sin2(Nπdx/λ)

sin2(πdx/λ)
(8)

denotes the antenna directivity function, which depends on the
angular misalignment x. Hence, the mean RSS is a function
of angular misalignment ωi − ϑ.

Theorem 1: In the single-path channel, the mean reward
(RSS) over the beam space is a unimodal function.

Proof 1: Proof is provided in Appendix A.
The linear combination of several unimodal functions is a

multimodal function, which means that there exist several local
optimums.

Corollary 1: In the multipath channel, the mean reward
(RSS) over the beam space is a multimodal function. The
dominant peak of the multimodal function is caused by the
LOS path, while other peaks are caused by NLOS paths.

Proof 2: Proof is provided in Appendix B.
For example, Fig. 3 shows the RSS function over the beam

space in a two-path channel. Even though the practical RSS is
noisy due to the channel fluctuation, we observe that the mean
RSS function follows the multimodality structure. For a two-
path mmwave channel, there exist two peaks in the mean RSS
function, where the dominant peak is due to the LOS path and
another smaller peak is due to the NLOS path. Furthermore,
the multimodality structure has been observed in many in-field
measurements in mmwave systems, which further validates our
theoretical results.

Remark 1: Theoretical analysis indicates that the RSS
depends on the angular misalignment. As the angular mis-
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alignment of nearby beams is close, the RSS of nearby beams
is similar such that nearby beams are highly correlated.

Since the RSS function over the beam space is a multimodal
function, the BA problem boils down to identifying the optimal
point of a multimodal function. In other words, our goal is
to find optimal point x? that maximizes multimodal reward
function f(x), x ∈ X . To solve this problem efficiently,
the correlation structure of the reward function is leveraged.
Specifically, the correlation structure is exploited based on a
dissimilarity function that captures the smoothness of reward
function [29].

Definition 2: Dissimilarity. For space X , a dissimilarity
function for x1 ∈ X and x2 ∈ X is defined as q(x1, x2) =
w‖x1 − x2‖β , where w > 0, β > 0 and ‖ · ‖ denotes the
Euclidean norm function. Note that q(x, x) = 0 for x ∈ X .

The dissimilarity function is applied to characterize the
discrepancy of two points in the reward function. Normally,
two nearby points in the function have similar rewards, which
means the dissimilarity between two nearby points is bounded.
Such smoothness property of the reward function is exploited
in the following algorithm design to accelerate the BA pro-
cess.

B. Prior Knowledge

In addition to the aforementioned correlation structure, some
prior knowledge can be leveraged to further speed up the
BA process. As the reward is impacted by wireless envi-
ronments, channel fluctuation statistics reflects the underlying
information of the wireless environments. Leveraging the
channel fluctuation statistics can appropriately accommodate
the reward uncertainty such that less exploration is required.
Specifically, the variance of the channel fluctuation σ2 is
assumed to be known a priori to accelerate the BA process.
In practice, the prior knowledge can be obtained in the
system initialization phase before the BA process is invoked.
Practical mmwave systems also collect the variance of channel
fluctuation periodically. Besides, since the channel statistical
information changes slowly in static environments, there is
no need to frequently collect the information. It is worth
noting that the proposed algorithm works even with coarse
prior knowledge at the expense of slower convergence or lower
beam detection accuracy, which is presented in Section VI.

C. Hierarchical Beam Alignment (HBA) Algorithm

As discussed, the mean reward function exhibits the mul-
timodality structure, and hence we adapt and extend the
hierarchical optimistic optimization (HOO) algorithm [29] to
the BA problem. Due to the lack of prior knowledge, HOO
adopts a large confidence margin to accommodate the reward
uncertainty, which results in slow convergence. Similar to
the well-known Bayesian principles in [30], we leverage the
prior knowledge to obtain an appropriate confidence margin,
which avoids unnecessary exploration and further accelerates
convergence. The proposed HBA algorithm is sketched in
Algorithm 1. In the algorithm, Ber(0.5) represents a Bernoulli
distributed random variable with a parameter of 0.5, which
means that the random variable is equally likely to take values

0 and 1. In addition, leaf(T ) represents the leaf node of tree
T .

The proposed algorithm is designed based on the correlation
structure among beams. If a beam performs well, its nearby
beams are highly likely to perform well too. Hence, the core
idea is to explore intensively around good beams while loosely
in others. For this purpose, a search tree is constructed, whose
nodes are associated with search regions. A deeper node
represents a smaller search region, as an illustrative example
shown in Fig. 4(a). The algorithm operates in discrete time
slots, and the binary tree is constructed in an incremental
manner. At each time slot, a new node is selected by a node
selection process and added to the search tree. Once selected,
the beam located in the selected node is measured, and then the
corresponding reward is observed. Then, the attributes of the
search tree are updated based on the newly observed reward. In
this way, the algorithm intelligently narrows the search region
until the optimal beam is identified. It is worth noting that
selecting a new node means exploring the region associated
to the node, and the search tree explores the region based on
previously selected beams and observed rewards.

Next, we elaborate the algorithm in detail. In the initial-
ization phase, the beam space, B, is mapped to a region
X = [0, 1], which is uniformly partitioned by each beam.
Similarly, the RSS function, r(bi),∀bi ∈ B, is mapped to a
normalized reward function, f(x),∀x ∈ X , within [0, 1]. In
the beginning, the search tree T only contains a root node
(0, 1). The node in the tree is represented by (h, j), where
h denotes the depth from the root node and j, 1 ≤ j ≤ 2h

denotes the index at depth h. In addition, each node in the
tree is associated with a region. Let Ch,j represent the region
of (h, j). Specifically, the root node represents the entire
region, i.e., C0,1 = [0, 1]. Let (h+ 1, 2j − 1) and (h+ 1, 2j)
denote the left and the right child node of (h, j), respectively.
Two child nodes partition the region of their parent node.
Consider Ch,j = [xL, xH ], the left child node is associated
with a region Ch+1,2j−1 = [xL, xa] and the right child
node is associated with a region Ch+1,2j = [xa, xH ], where
xa = xL+(xH − xL) /2 is the middle point of Ch,j . The HBA
algorithm operates in a “zooming” manner, which intelligently
narrows the search region via comparing the Q-values in the
tree. The Q-value is designed based on the correlation structure
of the reward function and the prior knowledge. At time slot
t, HBA consists of the following three phases:

1. New node selection. In this phase, a new node will be
selected. Let Tt denote the tree at time t. At each time slot,
starting from the root node, the Q-values of two child nodes
are compared until a new node (Ht, Jt) /∈ Tt is selected.
Specifically, traversing the tree, the child with a higher Q-value
is chosen, otherwise breaking ties randomly (lines 5-6). The
selected node is added to the tree, i.e., Tt+1 = Tt∪{(Ht, Jt)},
and the path from the root node to the selected node is stored
in P .

2. Attributes update. In this phase, the attributes of all the
nodes in the tree are updated. For the selected node in the
previous phase, a beam located in the center of CHt,Jt is
measured and then the corresponding reward rt is obtained.
Based on the newly observed reward, for node (h, j), Qh,j is
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Algorithm 1: HBA algorithm

Input: ζ, ρ1, γ and σ2

Output: b?
1 Initialization: Set T = {(0, 1)}, Q2,1 = Q2,2 = +∞,

xL = 0 and xH = 1;
2 for t=1,2,3... do
3 (h, j)← (0, 1), P ← {(h, j)};
4 � New node selection
5 while (h, i) ∈ Tt do

if Qh+1,2j−1 (t) > Qh+1,2j (t) then
(h, j)← (h+ 1, 2j − 1), update xL = xa;

else if Qh+1,2j−1 (t) < Qh+1,2j (t) then
(h, j)← (h+ 1, 2j), update xH = xa;

else
(h, j)← (h+ 1, 2j−Ber(0.5)), update the
search region;

end if
P ← P ∪ {(h, j)};

6 end
7 (Ht, Jt)← (h, j); Tt+1 = Tt ∪ {(Ht, Jt)};
8 � Attributes update
9 Measure the beam located in the center CHt,Jt ,

and observe the reward rt;
10 ∀(h, j) ∈ P , update Nh,j (t) and Rh,j (t) with (9)

and (10), respectively;
11 ∀(h, j) ∈ Tt, update Eh,j (t) with (11);
12 QH+1,2J−1 (t) = QH+1,2J (t) = +∞; T̂ = Tt;
13 for (h, j) ∈ T̂ do
14 (h, j)← leaf(T̂ ), update Qh,j (t) with (12),

T̂ ← T̂ \ (h, j);
15 end
16 � Terminating condition

if xH − xL < ζ/N then
Terminate beam search and select current beam b?;

end if
17 end

updated by the following steps.
Firstly, as the new node is the descendant of all the nodes

in path P , Nh,j (t), which represents the number of times that
(h, j) has been selected until time slot t, is updated by

Nh,j (t) = Nh,j (t− 1) + 1,∀(h, j) ∈ P. (9)

Secondly, Rh,j (t) represents the mean measured reward of
(h, j) up to time slot t, which is updated by

Rh,j (t) =
(Nh,j (t)− 1)Rh,j (t− 1) + rt

Nh,j (t)
,∀(h, j) ∈ P.

(10)
Thirdly, for each node in the tree, the initial estimated

maximum mean reward in region Ch,j , denoted by Eh,j (t),
is updated by,

Eh,j (t) =

{
Rh,j (t) +

√
2σ2 log t
Nh,j(t)

+ ρ1γ
h, if Nh,j (t) > 0;

+∞, otherwise,
(11)

where
√

2σ2 log t
Nh,j(t)

is the confidence margin to accommodate
for the uncertainty of rewards. As aforementioned, we adopt
the Bayesian principle to design the confidence margin by
leveraging the prior knowledge on the variance of channel
fluctuation. In (11), ρ1γ

h accounts for the maximum variation
of the mean reward function in region Ch,j , where ρ1 > 0 and
γ ∈ (0, 1). This term is obtained via the correlation structure
in the reward function. The maximum dissimilarity within
region Ch,j for the reward function is upper bounded by ρ1γ

h,
i.e., max

x1,x2∈Ch,j
q(x1, x2) ≤ ρ1γ

h,∀x1, x2 ∈ X , which holds

due to the bounded diameter assumption in Section V. The
values of ρ1 and γ are selected based on extensive simulation
trials. For a binary tree case, γ is typically set to 0.5 [29]. Note
that E-values of all the unexplored nodes are set to infinity.

Finally, the estimated maximum mean reward in region
Ch,j , Qh,j (t), should be recursively updated through the
following bound

Qh,j (t) =


min{Eh,j (t) ,max{Qh+1,2j−1 (t) , Qh+1,2j (t)}},

if Nh,j (t) > 0;

+∞, otherwise.
(12)

This bound depends on two terms. The first term, Eh,j (t),
is an upper bound for Qh,j (t) due to the definition of E-
values. The second term, max{Qh+1,2j−1 (t) , Qh+1,2j (t)},
is another valid upper bound of Qh,j (t). Since Ch,j =
Ch+1,2j−1 ∪ Ch+1,2j−1, the maximum value between the Q-
values in two subsets is the upper bound of Q-value in the
union set. Combining both terms together, a tighter upper
bound is obtained via taking the minimum value of these two
bounds. Note that Q-values should be updated from the leaf
node of the tree because Q-values of child nodes form the
upper bound of their parent node (lines 12-15).

3. Terminating condition. As the tree is constructed over
time, the search region gradually narrows as the depth of the
tree increases. When the search region is sufficiently small,
i.e., xH − xL < ζ/N where 0 < ζ < 1, the BA process is
terminated and the beam located in the final region is selected
as the optimal beam. The value of ζ should be carefully
selected based on extensive simulation trials. Noteworthily, a
larger ζ value results in faster convergence while lower beam
detection accuracy.

Remark 2: A region attained a large Q-value represents that
the potential maximum reward in the region is high, which
means that the optimal beam (the maximum reward) locates
in this region with a high probability. Hence, the HBA algo-
rithm explores intensively in the regions with high estimated
maximum rewards (Q-values) while loosely in others. In this
way, the HBA algorithm is more efficient than the exhaustive
search method, which accelerates the BA process.

Illustrative example: For better understanding of HBA, we
provide two illustrative examples in Fig. 4. Firstly, as shown
in Fig. 4(a), HBA operates similar to a “zooming” process. At
the beginning, the search region is the entire region, which
is uniformly partitioned by the beams. As time goes by,
the search region is adaptively partitioned, and the algorithm
gradually zooms to the region that contains the optimal beam.
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Fig. 4. Illustrative examples of the HBA algorithm. (a) The proposed
algorithm operates in a “zooming” manner. (b) The region that contains the
dominant peak is explored intensively, while others are explored loosely.

Secondly, sequentially selected beams in the BA process are
depicted in Fig. 4(b). The selected beams are divided into
three batches according to the timeline. The first batch beams
locate randomly in the whole region. The second batch beams
get closer to the dominant peak. The last batch beams mainly
focus around the optimal beam. We observe that the proposed
algorithm explores intensively in the regions that contain good
beams while loosely on the others.

D. Complexity Analysis

At time slot T , Tt contains T nodes as the tree increments
by one node at each time slot. Hence, the storage complexity
of the proposed algorithm is linear, i.e., O(T ). In addition, the
attributes of all the nodes in the tree should be updated at each
time slot, and hence the running time at each time slot is also
linear. As the algorithm runs T time slots, the computational
complexity of the HBA algorithm is a quadratic complexity
O(T 2). With the terminating condition, the tree is a finite
tree and hence both storage complexity and computational
complexity are bounded.

V. REGRET PERFORMANCE ANALYSIS

In this section, we analyze the upper bound on the cumula-
tive regret for the proposed algorithm. For the tractability of
regret analysis, we have the following two assumptions.

Assumption 1: (Weak Lipschitz) For any x around the
optimal x?, there exist constants cH > 0 and α > 0 such
that

f? − f(x) ≤ cH‖x? − x‖α (13)

where f? = f(x?) represents the optimum of function f(·).
This assumption indicates that the reward function satisfies
the week Lipschitz condition, which can avoid sharp valleys
around the optimal point that induces high regret. Furthermore,
the weak Lipschitz condition is mild, which only has the
impact on the region in the vicinity of the optimal value. This
assumption is well justified in many practical applications [17].

Assumption 2:
1) (Bounded diameter) For a region, Ch,j , of depth h,

the diameter of the region is defined as D(Ch,j) =
max

x,y∈Ch,j
q(x, y). The diameter of the region is upper

bounded by ρ1γ
h for constants ρ1 > 0 and 0 < γ < 1.

2) (Well-shaped region) For a region, Ch,j , of depth h,
the region contains a ball with a radius of ρ2γ

h which
locates in the center of Ch,j .

The bounded diameter condition is to upper bound the max-
imum variation of f(x) within the region Ch,j . In contrast, the
well-shaped region condition is to lower bound the minimum
variation of f(x) within the region Ch,j . Note that any region
in the reward function satisfies the bounded diameter and well-
shaped region conditions [29], which are utilized to bound the
cumulative regret in the following analysis.

Definition 3: ε-optimal. Let f?h,j = max
x∈Ch,j

f(x) be the

optimal reward in Ch,j . If f?h,j > f? − εh,j , Ch,j is the εh,j-
optimal region.

For example, if εh,j = 0, Ch,j is the optimal region where
optimal value x? locates. Otherwise, if εh,j > 0, Ch,j is a sub-
optimal region. Let εh,j represent the suboptimality of (h, j).

To obtain the regret bound, we first provide the following
lemma.

Lemma 1: For any node (h, j) whose suboptimality is larger
than ρ1γ

h, the expected number of times that (h, j) has been
visited until time slot T , is upper bounded by

E [Nh,j(T )] ≤ 8σ2 log T

(εh,j − ρ1γh)
2 + c (14)

where c is a constant.
Proof 3: The detailed proof is given in Appendix C.
Remark 3: From Lemma 1, the number of times that a

suboptimal node has been visited logarithmically increases
with time, which implies the cumulative regret of the proposed
algorithm is sublinear. In addition, the number of times that
a suboptimal node has been visited, depends on the variance
of the channel fluctuation. A larger variance of the channel
fluctuation implies a more noisy wireless environment, which
yields more exploration efforts to remove the reward uncer-
tainty.

Based on above lemma, an upper bound is obtained in the
following.

Theorem 2: The upper bound on the cumulative regret of
HBA is

Rπ (T ) = O
(√

T log T
)
. (15)
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Table I
SIMULATION PARAMETERS.

Parameter Value
Noise spectrum density (No) −174 dBm/Hz

System bandwidth (W ) 2.16 GHz
Carrier frequency (f) 60 GHz
Path loss exponent (ξ) 1.74

Shadowing fading variance (σ) 2 dB
Signal range [−80,−20] dBm

SSW frame duration (TSSW ) 15.8 us
Beacon interval duration (TBI) 100 ms

Number of beams (N) {8-512}
EIRP (Pe) 50 dBm

Number of paths (L) {1-5}
Algorithm parameters (ρ1, γ) (3, 0.5)

Terminating condition threshold (ζ) 0.1
Time horizon (T ) 1000 time slots

Extra NLOS path loss U(7, 13) dB
Transmission distance (d) 20 m

Proof 4: The detailed proof is given in Appendix D.
Remark 4: Theorem 2 indicates the expected cumulative

regret of HBA is sublinear in the time horizon T , i.e.,
lim
T→∞

Rπ(T )/T = 0. Since the per-slot regret diminishes over
time, the proposed algorithm is asymptotically optimal. Hence,
the proposed algorithm converges to the optimal beam over
time. Moreover, for finite time horizon T , the regret bound
characterizes the convergence speed of the proposed algorithm.

VI. SIMULATION RESULTS

A. Simulation Setup

We simulate an IEEE 802.11ad system, operating at 60
GHz with a bandwidth of 2.16 GHz [31]. Consider an outdoor
scenario, such as university campus, where the transmission
distance between the transmitter and the receiver is set to 20 m
unless otherwise specified. The average effective isotropically
radiated power (EIRP) Pe is fixed at 50 dBm1, which is consis-
tent with FCC regulations for 60 GHz unlicensed bands [32],
[33]. Taking the directional antenna gain into consideration,
the transmit power is P = Pe − 10 log10N . For instance, the
transmit powers are set to around 32 dBm and 23 dBm for 64
and 512 antenna arrays, respectively. It is worth noting that the
mmwave channel is sparse, and hence we set the maximum
number of channel paths to 5, which consists of one dominant
LOS path and four NLOS paths. For the LOS path, the path
loss is modeled as

PL(dB) = 32.5 + 20 log10(f) + 10ξ log10(d) + χ (16)

where f , ξ, d, and χ represent the carrier frequency, path loss
exponent, transmission distance, and shadow fading, respec-
tively. The shadow fading follows N(0, σ2) where σ is set to
2 dB [34]. Note that the channel fluctuation in the simulation
is mainly caused by the shadow fading. In addition, according
to practical in-field measurements, NLOS paths suffer around
10 dB more path loss than the LOS path [27]. We assume
that the extra NLOS path loss follows a uniform distribution

1For outdoor applications with the high antenna gain, the average EIRP
limit is up to 82 dBm [32].
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Fig. 5. Cumulative regret performance in the multipath channel.

within [7, 13] dB. Furthermore, for the HBA algorithm, the
RSS within [−80,−20] dBm is mapped to a reward within
[0, 1]. The algorithm parameters, ρ1, γ, and ζ are set to
3, 0.5, and 0.1, respectively, based on extensive simulation
trials. Important simulation parameters are listed in Table I.
We evaluate the performance via Monte-Carlo simulations.
Simulation results are averaged based on 50000 samples with
different channel fading and locations. The proposed HBA
algorithm is compared to the following benchmarks:

• IEEE 802.11ad [2]: In this industrial method, one side
(transmitter or receiver) scans the beam space, while the
other side keeps omni-directional.

• UCB [28]: The celebrated algorithm selects the beam
without exploiting both correlation structure and prior
knowledge. The confidence margin is ηu

√
2 log t/Nbi(t),

where the learning rate ηu is set to 0.2 based on extensive
simulation trials.

• Unimodal beam alignment (UBA) [6]: The algorithm
exploits the unimodal structure among beams to perform
BA. Hence, it works in a “hill-climbing” manner, which
selects the best beam among the neighboring beams at
each time slot.

• HOO [29]: The algorithm selects the beam by exploiting
beam correlation, without the prior knowledge. The con-
fidence margin is ηh

√
2 log t/Nh,j(t) + c1γ

h. Here, the
learning rate ηh is set to 0.1, which is chosen based on
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Fig. 6. Performance comparison with respect to the number of paths. Error bars show the 90 percentile performance.

extensive simulation trials.

B. Regret Performance

Figure 5(a) shows the cumulative regret performance in
two-path channels. Several important observations can be ob-
tained from simulation results. First of all, HBA significantly
outperforms other benchmarks. A “bounded regret” behavior
is observed, which complies with the theoretical result in
Theorem 2. In addition, HBA converges much faster than
other benchmarks. Specifically, HBA only takes around 25
time slots to converge to the optimal beam. This is because
HBA exploits both correlation structure and prior information
to accelerate the BA process, while other benchmarks only
exploit correlation structure or not. It is interesting to note that,
as time goes by, the UBA algorithm performs even worse than
the BA method in IEEE 802.11ad which does not exploit the
correlation structure. The reason is that the UBA algorithm
is designed based on the unimodal structure among beams,
while the reward function evolves to a multimodal structure in
the multipath channel. This model mismatch results in worse
performance than not exploiting the correlation structure at all.

We further evaluate the impact of the channel fluctuation
distribution on the regret performance in Fig. 5(b). To evaluate
the dependency of the Gaussian distribution, the performance
under Gaussian distribution is compared to that under two
well-adopted non-Gaussian distributions, i.e., uniform distri-
bution and Rayleigh distribution. The performance under non-
Gaussian settings is very close to that under the Gaussian
distribution, which means that the proposed algorithm can
be applied in various settings. Furthermore, the impact of
the channel fluctuation variance (σ2) is studied in Fig. 5(b).
As expected, the cumulative regret increases as the variance
increases, because more exploration efforts are required in
highly fluctuated channels.

C. Measurement Complexity and Beam Detection Accuracy

The regret performance only reflects the bounded fact
of regret, not necessarily the actual performance. Next, we
evaluate the performance of HBA using following two metrics:
the number of measurements and beam detection accuracy.

We first evaluate the scalability of the proposed algorithm
with the number of beams in single-path scenarios, as shown in

Fig. 6(a). It is evident that the proposed algorithm significantly
reduces the number of measurements as compared to the BA
method in 802.11ad. For a small number (N = 32) of beams,
the proposed algorithm reduces the number of measurements
by 2 times as compared to the 802.11ad benchmark. Further-
more, the proposed algorithm achieves higher performance
gains for larger numbers of beams. For instance, for a large
number (N = 512) of beams, the proposed algorithm only
needs around 40 measurements to identify the optimal beam,
which reduces the number of measurements by 12 times as
compared to the 802.11ad benchmark. The reason is that,
different from the BA method in 802.11ad that explores all
the beams, the proposed algorithm only needs to explore a
few beams by leveraging the correlation structure and the prior
knowledge. The results validate that the proposed algorithm
is a scalable solution even with a large number of beams.
In addition, we compare the HBA algorithm with the UBA
algorithm. It can be seen that the UBA algorithm performs
better than the HBA algorithm when the number of beams is
small (N ≤ 32). However, when the number of beams is large,
HBA performs much better than UBA. Since UBA works in a
“hill-climbing” manner to find the optimal beam, the number
of measurements required by UBA increases with the number
of beams due to a longer path to the optimal point. To avoid
exceedingly high BA latency, the BA performance for a large
number of beams is crucial. Thus, the proposed algorithm is
more effective than the UBA algorithm when the number of
beams is large. Besides, UBA does not work well in multipath
scenarios, while the proposed algorithm does.

As shown in Fig. 6, we further study the performance in
multipath channels. Due to the inherent sparse characteristics
of the mmwave channel, the number of paths is selected from
1 to 5. Firstly, the numbers of measurements in terms of the
number of paths are compared in Fig. 6(b). It can be seen that
the number of measurements increases slightly as the number
of paths increases. For example, for a 128-beam case, the
number of measurements in the five-path channel increases by
15% as compared to that in the single-path channel. Secondly,
beam detection accuracy performance is presented in Fig.
6(c). The HBA algorithm detects the optimal beam with a
high probability, even in sophisticated multipath channels.
Simulation results show that the beam detection accuracy is
higher than 97%, even in the worst case. In addition, the
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Fig. 7. Performance comparison with respect to transmission distance in
two-path channels.

beam detection accuracy slightly decreases as the number of
paths increases. For a large number (N = 256) of beams, the
beam detection accuracy decreases from 99.6% in the single-
path channel to 97.4% in the five-path channel due to the
sophisticated multipath channel.

Figure 7 shows the impact of the transmission distance on
the performance. We first observe that the number of mea-
surements increases in terms of the transmission distance, as
shown in Fig. 7(a). Specifically, the number of measurements
increases by 32% as the distance increases from 5 meters
to 50 meters for N = 128. Because the RSS is weaker
for a longer distance such that limited information can be
extracted from nearby beams. Hence, the proposed algorithm
needs to explore more beams to identify the optimal beam
for remote users. Even for remote users, the proposed BA
algorithm performs better than the 802.11ad benchmark. When
the distance increases to 50 meters, our algorithm needs about
44 measurements for N = 256, which still reduces the number
of measurements by 5.8 times as compared to the 802.11ad
benchmark. Finally, the beam detection accuracy is presented
in Fig. 7(b). Even in the low SNR case, the proposed algorithm
can detect the optimal beam with a high probability.

For implementation consideration, Fig. 8 presents the per-
formance of HBA under coarse prior knowledge conditions.
The metric of the coarse prior knowledge is defined as a
ratio between the estimated variance (σ2

e) and the accurate
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Fig. 8. Performance comparison with coarse prior knowledge in two-path
channels.

one, i.e., η = σ2
e/σ

2. Hence, the coarse prior knowledge
can be divided into two categories: the underestimated prior
knowledge when η < 1 and the overestimated prior knowledge
when η > 1. We can see from Fig. 8(a) that the number
of measurements increases as η increases from 0.25 to 4.
Specifically, for a 256-beam case, the HBA algorithm with
the overestimated prior knowledge for η = 4 requires more
beam measurements as compared to that with accurate prior
knowledge. Overestimating prior knowledge results in a larger
confidence margin to accommodate reward uncertainty, such
that more exploration efforts are needed and better beam
detection accuracy can be achieved, as shown in Fig. 8(b). In
contrast, when prior knowledge is underestimated, the number
of measurements is slightly smaller than that with accurate
prior knowledge, while the beam detection accuracy decreases
due to insufficient exploration efforts. More importantly, even
with the coarse prior knowledge, the proposed algorithm can
substantially reduce the number of measurements as compared
to benchmarks, and achieve high beam detection accuracy.
For a 256-beam case, even in the worst case, the proposed
algorithm reduces the number of measurements by 6 times in
comparison with the BA method in 802.11ad.

D. BA Latency

Practical BA latency needs to take the 802.11ad protocol
into consideration, which is different from a simple product
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Table II
BA LATENCY WITH DIFFERENT NUMBERS OF BEAMS IN MULTIPATH

CHANNELS.

One user Four-user
N 802.11ad HBA 802.11ad HBA
16 0.51 ms 0.48 ms 1.26 ms 1.19 ms
32 1.01 ms 0.59 ms 2.53 ms 1.47 ms
64 2.02 ms 0.65 ms 103.03 ms 1.63 ms

128 4.04 ms 0.76 ms 304.04 ms 1.89 ms
256 106.07 ms 0.94 ms 706.07 ms 2.35 ms

of the number of measurements and the duration of each
measurement. In the protocol, BA must be performed in the
associated beamforming training (A-BFT) stage, which con-
tains 8 A-BFT slots, and each A-BFT slot contains 16 sector
sweep (SSW) frames. Each SSW frame can only provide one
measurement for one beam and has a duration about 15.8 us
[2], [35]. If the BA process cannot be finished in the A-BFT
stage of the current beacon interval (BI), this BA process has
to wait for the A-BFT stage in the next BI, which increases
the BA latency for a whole BI duration. In the simulation, the
duration of BI is set to 100 ms [2]. In addition, since the HBA
algorithm requires the feedback of RSS of the selected beam at
each round, the feedback latency should also be incorporated
into the calculation of BA latency. The duration of a feedback
frame at each round is about 1 us in 802.11ad [36]. Taking the
above protocol and the feedback latency into consideration,
BA latency is calculated based on the average number of
measurements. Table II presents the BA latency with different
numbers of beams in the two-path channel. As expected, the
BA latency increases as the number of beams increases. For
the case with one user, the proposed algorithm reduces the
BA latency significantly as compared to the BA method in
802.11ad. In particular, for a large number (N = 256) of
beams, the BA latency drops from 106.07 ms to only 0.94 ms.
This is because the BA process with the proposed algorithm
can be finished in one BI as a small number of measurements
is required to identify the optimal beam. Furthermore, a larger
performance gain can be observed in the four-user case. In
contrast to the BA method in 802.11ad which incurs more than
700 ms latency for a 256-beam phase arrays, the proposed
algorithm takes about 2.35 ms, which corresponds to two
orders of magnitude gain.

VII. CONCLUSION

In this paper, we have investigated the BA problem in
mmwave systems to find the optimal beam pair. We have
developed HBA, a learning algorithm which leverages the
inherent correlation structure among beams and the prior
knowledge on the channel fluctuation to accelerate the BA
process. The proposed HBA algorithm can identify the optimal
beam with a high probability using a small number of beam
measurements, even when the number of beams is large.
HBA can be applied to meet the demand of delay-sensitive
Gbps applications, such as cordless virtual reality gaming.
Beyond the BA problem, the design principle of leveraging
correlation structure is useful in other optimization problems
in wireless networks, such as power allocation and interference

mitigation. For our future works, it would be interesting to
extend the proposed algorithm to mobile scenarios, where
the environment is highly dynamic and delay requirement is
more stringent. In such scenario, the main challenge lies in
extracting information from the real-time environment to speed
up BA.

APPENDIX

A. Proof of Theorem 1

According to (7), the maximum RSS can be achieved with
the minimum angular misalignment denoted by, δ = ωi? − ϑ,
where ωi? is the spatial angle for the optimal transmit beam.
Hence, D (ωi − ϑ) can be rewritten as

D (ωi − ϑ) = D

(
δ +

2(i− i?)
N

)
=

sin2(Nπdδ/λ)

sin2
(
πd
(
δ + 2(i−i?)

N

)
/λ
) ,∀bi ∈ B. (17)

From simple analysis in (17), D (ωi − ϑ) monotonically
increases in [i◦, i?] and decreases in [i?, i? + N

2 ], where i◦ =
i? − N

2 . Hence, the mean RSS function over the beam space
increases along path (bi◦ , bi◦+1, ..., bi?) and decreases along
path (bi? , bi?+1, ..., bi◦−1), i.e., r(bi◦) < r(bi◦+1) < ... <
r(bi?) > ... > r(bi◦−2) > r(bi◦−1). With the definition of the
unimodality structure, the mean RSS function is unimodal over
the beam space in the single-path channel, and the theorem
statement follows.

B. Proof of Corollary 1

Similar to (7), the mean RSS in the multipath channel is
represented by

E [r(bi)] =
Pg2

0

N
D (ωi − ϑ0)︸ ︷︷ ︸

LOS component

+

L−1∑
l=1

Pg2
l

N
D (ωi − ϑl)︸ ︷︷ ︸

NLOS component

+NoW.

(18)

Above equation indicates that the aggregated RSS consists
of a LOS component and several NLOS components. For each
individual path of the mmwave channel, the corresponding
RSS function is unimodal function based on Theorem 1.
Hence, the RSS function in the multipath channel is the
aggregation of several unimodal functions, which can be
considered as a multimodal function. Specifically, L paths
exist in the mmwave channel, which correspond to L peaks in
the multimodal function. As the channel gain of the LOS path
is significantly larger than that of NLOS paths, i.e., g2

0 > g2
l .

Hence, the dominant peak corresponds to the LOS path while
other peaks correspond to NLOS paths. Hence, the Corollary
1 is proved.

C. Proof of Lemma 1

For any integer m > 0, according to the definition, the
average times that node (h, j) has been visited up to time slot
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T , is given by

E [Nh,j(T )] = E

[
T∑
t=1

1(Ht,Jt)∈Ch,j

]

= E

[
T∑
t=1

1{(Ht,Jt)∈Ch,j ,Nh,j(t)≤m}

]

+ E

[
T∑
t=1

1{(Ht,Jt)∈Ch,j ,Nh,j(t)>m}

]

≤ m+ E

[
T∑

t=m+1

1{(Ht,Jt)∈Ch,j ,Nh,j(t)>m}

]

= m+

T∑
t=m+1

P ((Ht, Jt) ∈ Ch,j , Nh,j(t) > m) .

(19)

where 1{·} is the indicator function and (Ht, Jt) ∈ Ch,j
denotes the selected node (Ht, Jt) locates within Ch,j . The
first equality is because Nh,j(t) > m only occurs when t is
larger than m.

We apply a case study to obtain an upper bound of
E [Nh,j(T )]. Assume node (h, j) is selected at time slot
t. The path from root node (0, 1) to (h, j) is given by,
P = {(0, 1), (1, j?1 ), ..., (k, j?k), (k+1, jok+1), ..., (h, j)}, where
k denotes the largest depth of the optimal node in the path.
Before node (k, j?k), the optimal nodes are selected. For
notation simplicity, we omit the time slot t in Qk,j(t). After
traversing node (k, j?k), a sub-optimal node (k + 1, jok+1) is
selected instead of the optimal node (k + 1, j?k+1) because
the suboptimal node has a larger Q-value than the optimal
node, i.e., Qk+1,jo ≥ Qk+1,j? . As Q-values increase along
path P , we have Qk+1,j? ≤ Qk+1,jok+1

≤, ...,≤ Qh,j . Note
that Q-values are upper bounded by E-values according to
the definition, such that Qk+1,j? ≤ Eh,j . Further, event
Qk+1,j? ≤ Eh,j can be interpreted as the union of two events,
{Qk+1,j? ≤ f?} ∪ {Eh,j ≥ f?}. Hence, the probability that
(Ht, Jt) locates within Ch,j is upper bounded by

P ((Ht, Jt) ∈ Ch,j) ≤ P (Qk+1,j? ≤ f?) + P (Eh,j ≥ f?) .
(20)

With the definition of Q-value, the Q-value of a node is
the minimum value among the E-value of the node and Q-
values of its child nodes. Hence, event {Qk+1,j? ≤ f?} can
be interpreted as the union of two new events, {Ek+1,j? ≤
f?} ∪ {Qk+2,j?k+2

≤ f?}. Since event {Qk+2,j?k+2
≤ f?} can

be further recursively expanded as
t−1⋃

s=k+2

{Es,j?s ≤ f?}, we

have

P (Qk+1,j? ≤ f?) ≤
t−1∑

s=k+1

P
(
Es,j?s ≤ f

?
)
. (21)

Substituting (21) and (20) into (19), (19) can be rewritten
as

E [Nh,j(T )] ≤ m+

T∑
t=m+1

(
t−1∑

s=k+1

P (Es,j? (t) ≤ f?)

+P (Eh,j (t) ≥ f?, Nh,j(t) > m)) .

(22)

The following analysis is to bound the three terms in (22)
separately.

Firstly, since m is an arbitrary integer, taking m as the
smallest integer that satisfies the condition m ≥ 8σ2 log T

(εh,j−c1γh)2
.

Hence m is bounded by

m ≤ 8σ2 log T

(εh,j − ρ1γh)
2 + 1. (23)

Secondly, we aim to bound the first term P (Es,j? ≤ f?).
For the optimal nodes (h, j?), according to the definition of E-
values, Eh,j? =∞ when Nh,j? = 0. Hence, event Eh,j? ≤ f?
only occurs when Nh,j ≥ 1. As a result, P (Eh,j? ≤ f?) can
be rewritten as

P (Eh,j? ≤ f?, Nh,j ≥ 1)

= P

(
Rh,j? +

√
2σ2 log t

Nh,j?
+ ρ1γ

h ≤ f?, Nh,j? ≥ 1

)

= P
((
f? −Rh,j? − ρ1γ

h
)
Nh,j? ≥

√
2σ2Nh,j? log t,

Nh,j? ≥ 1)

(a)
= P

(
t∑

s=1

(
f? − f(Xs) + ρ1γ

h
)
1(Ht,Jt)∈Ch,j?

+

t∑
s=1

(f(Xs)− Ys)1(Ht,Jt)∈Ch,j? ≥
√

2σ2Nh,j? log t,

Nh,j? ≥ 1)

(b)

≤ P

(
t∑

s=1

(f(Xs)− Ys)1(Ht,Jt)∈Ch,j? ≥
√

2σ2Nh,j? log t,

Nh,j? ≥ 1)

(c)
= P

Nh,j?∑
p=1

(
Ỹp − f(X̃p)

)
≥
√

2σ2Nh,j? log t,Nh,j? ≥ 1

 .

(24)

In (24), the first step follows from the definition of E-value
in (11); (a) is obtained from the definition of Nh,j? , where
Xs,∀s = 1, 2, ..., t−1 denotes the sequentially selected beams
up to time t − 1 and the corresponding reward sequence is
represented by Ys; (b) follows from the fact that f?−f(Xt)−
ρ1γ

h < 0 holds for all the beams in the optimal region Ch,j? ;
(c) is because the definition of a new beam selection sequence
X̃p,∀p = 1, 2, 3, ... whose corresponding reward sequence is
Ỹp.

Let Tp = min{t : Nh,j(t) = p} represent the time sequence
for the selected node in Ch,j . The sequentially selected beams
can be represented by a new sequence X̃p = XTp ,∀p =
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1, 2, 3, ..., and (24) can be further bounded by

P

Nh,j?
h∑

p=1

(
Ỹp − f(X̃p)

)
≥
√

2σ2Nh,j? log t,Nh,j?h ≥ 1


(a)

≤
t∑

s=1

P

(
s∑
p=1

(
Ỹp − f(X̃p)

)
≥
√

2σ2s log t

)
(b)

≤
t∑

s=1

exp

(
−4σ2s log t

sσ2

)
= t−3.

(25)

In (25), (a) can be acquired via the union bound that takes
all possible values of Nh,j?h ; as D̃p = Ỹp − f(X̃p) can be
considered as martingale differences, (b) is obtained via the
Hoeffding-Azuma inequality [29]

P

(
k∑
p=1

D̃p ≥ t

)
≤ exp

(
− 2t2∑k

p=1 σ
2

)
. (26)

Thirdly, for suboptimal nodes (h, j), the upper bound
of P (Eh,j ≥ f?, Nh,j > m) can be obtained via a similar
method of bounding P (Eh,j? ≤ f?, Nh,j ≥ 1), such that

P (Eh,j ≥ f?, Nh,j > m)

= P

(
Rh,j +

√
2σ2 log t

Nh,j
+ ρ1γ

h ≥ f?h,j + εh,j , Nh,j > m

)
(a)

≤ P
(
Rh,j ≥ f?h,j +

εh,j − ρ1γ
h

2
, Nh,j > m

)
= P

((
Rh,j − f?h,j

)
Nh,j ≥

εh,j − ρ1γ
h

2
Nh,j , Nh,j > m

)
= P

(
t∑

s=1

(
Ys − f?h,j

)
1(Hs,Js)∈Ch,j ≥ Nh,j

εh,j − ρ1γ
h

2
,

Nh,j > m)

≤ P

(
t∑

s=1

(Ys − f(Xs))1(Hs,Js)∈Ch,j ≥ Nh,j
εh,j − ρ1γ

h

2
,

Nh,j > m)

(b)
= P

Nh,j∑
p=1

(
Ŷp − f(X̂p)

)
≥ Nh,j

εh,j − ρ1γ
h

2
, Nh,j > m


(27)

In (27), (a) is due to the substitution of Nh,j(t) ≥ 8σ2 log t

(εh,j−ρ1γh)2

where m ≥ 8σ2 log t

(εh,j−ρ1γh)2
; (b) is obtained via a similar method

as (24)(c), where a new beam sequence {X̂1, X̂2, ..., X̂p} is
formed to represent the sequentially selected beams in Ch,j .

Next, (27) can be further bounded by

P

Nh,j∑
p=1

(
Ŷp − f(X̂p)

)
≥ Nh,j

εh,j − ρ1γ
h

2
, Nh,j > m


(a)

≤
t∑

k=m+1

P

(
k∑
p=1

(
Ŷp − f(X̂p)

)
≥ k(εh,j − ρ1γ

h)

2

)
(b)

≤
t∑

k=m+1

exp

(
−
k
(
εh,j − ρ1γ

h
)2

2σ2

)

≤ t exp

(
−
m
(
εh,j − ρ1γ

h
)2

2σ2

)
(c)

≤ t exp (−4 log T ) = tT−4

(28)

In (28), (a) is due to a similar union bound in (25)(a); (b) is
obtained via the Hoeffding-Azuma inequality; (c) is obtained
via the substitution of m ≥ 8σ2 log T

(εh,j−ρ1γh)2
.

Finally, substituting (23), (25) and (28) into (22), the upper
bound is given by

E [Nh,j(T )] ≤ 8σ2 log T

(εh,j − ρ1γh)
2 + 1 +

T∑
t=m+1

(
t−1∑
k+1

t−3 + tT−4

)

≤ 8σ2 log T

(εh,j − ρ1γh)
2 + 1 +

T∑
t=1

(
t−2 + T−3

)
≤ 8σ2 log T

(εh,j − ρ1γh)
2 + c

(29)

where c is a constant. The last step is because
∑T
t=1 t

−2 is
bounded. Hence, Lemma 1 is proved.

D. Proof of Theorem 2

All nodes with depth h can be divided into two subsets: Φh
that denotes the set of all the 2ρ1γ

h-optimal nodes, and Ωh
that denotes the set of nodes whose parents belong to Φh−1

while itself does not belong to Φh. Let H ≥ 1 be an integer
whose value is determined later. With above definition, T can
be divided into three subtrees: T1, T2 and T3. Let T1 contain
ΦH and its decedents. Let T2 include all the 2ρ1γ

h-optimal

nodes at all the depths smaller than H , i.e., T2 =
H−1⋃
h=1

Φh.

Let T3 include all the nodes in Ωh at all the depths smaller

than H , i.e., T3 =
H⋃
h=1

Ωh. Hence the cumulative regret can

be partitioned as

Rπ (T ) = E [Rπ (T1)] + E [Rπ (T2)] + E [Rπ (T3)] (30)

where

E [Rπ (Ti)] = E

[
T∑
t=1

(f? − f (Xt))1{(Ht,Jt)∈Ti}

]
.

Next, the regret analysis follows the idea of bounding the
regret on each subtree separately.
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Step 1: Bounding the regret on T1. As each node in ΦH
is 2ρ1γ

H -optimal, all the beams located in ΦH are 4ρ1γ
H -

optimal, i.e., f? − f (Xt) ≤ 4ρ1γ
H , Xt ∈ ΦH . In addition, it

is obvious that the number of nodes in subtree T1 is smaller
than the time horizon, i.e., |T1| ≤ T where | · | represents
the cardinality operator. Therefore, the regret on T1 is upper
bounded by

E [Rπ (T1)] ≤ 4ρ1γ
HT. (31)

Step 2: Bounding the regret on T2. As T2 =
H−1⋃
h=1

Φh

and each beam in Φh is 4ρ1γ
h-optimal, the regret on T2

can be written as E [Rπ (T2)] ≤
∑H−1
h=1 4ρ1γ

h|Φh|. Based
on the results in [29], we have |Φh| ≤ c1

(
ρ2γ

h
)−κ

where
κ = 1

β−
1
α . Specifically, α and β are give in the weak Lipschitz

assumption and the dissimilarity function, respectively. The
regret on T2 can be further bounded by

E [Rπ (T2)] ≤
H−1∑
h=1

4ρ1γ
hc1
(
ρ2γ

h
)−κ

= 4ρ1c1ρ
−κ
2

H−1∑
h=0

γh(1−κ) ≤ 4ρ1c1ρ
−κ
2

1− γ1−κ .

(32)

From (32), we can see that E [Rπ (T2)] is upper bounded by
a constant as T2 is a finite tree.

Step 3: Bounding the regret on T3. For each node in
Ωh, its parents should be included by Φh−1. Thus, all the
beams in Ωh are 4ρ1γ

h−1-optimal, and the cardinality of Ωh
is smaller than 2|Φh−1|. Besides, with the results in Lemma
1, E [Nh,j(t)] = 8σ2 log t

(ρ1γh)2
+ c, for any 2ρ1γ

h−1-optimal nodes.
Thus, the regret on T3 is given by

E [Rπ (T3)] ≤
H∑
h=1

4ρ1γ
h−12|Φh−1|E [Nh,j(T )]

≤ 8ρ1c1ρ
−κ
2

H∑
h=1

γ(h−1)(1−κ)

(
8σ2 log T

(ρ1γh)
2 + c

)
.

(33)

Finally, substituting (31), (32) and (33) into (30), we have

Rπ (T ) ≤ 4ρ1γ
HT +

4ρ1c1ρ
−κ
2

1− γ1−κ

+ 8ρ1c1ρ
−κ
2

H∑
h=1

γ(h−1)(1−κ)

(
8σ2 log T

(ρ1γh)
2 + c

)
= O

(
γHT + log Tγ−H(1+κ)

)
= O

(
T
κ+1
κ+2 (log T )

1
κ+2

)
.

(34)

The last step is obtained from setting γH as the order of
(T/log T )

−1/(κ+2) [29]. If the smoothness of the function is
known, we can set α = β such that κ = 0 [29]. Hence, (34)
can be rewritten as O

(√
T log T

)
, and then the theorem is

proved.
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