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Abstract—Collaboration among industrial Internet of Things
(IoT) devices and edge networks is essential to support
computation-intensive deep neural network (DNN) inference
services which require low delay and high accuracy. Sampling
rate adaption which dynamically configures the sampling rates
of industrial IoT devices according to network conditions, is
the key in minimizing the service delay. In this paper, we
investigate the collaborative DNN inference problem in industrial
IoT networks. To capture the channel variation and task arrival
randomness, we formulate the problem as a constrained Markov
decision process (CMDP). Specifically, sampling rate adaption,
inference task offloading and edge computing resource allocation
are jointly considered to minimize the average service delay while
guaranteeing the long-term accuracy requirements of different
inference services. Since CMDP cannot be directly solved by
general reinforcement learning (RL) algorithms due to the
intractable long-term constraints, we first transform the CMDP
into an MDP by leveraging the Lyapunov optimization technique.
Then, a deep RL-based algorithm is proposed to solve the MDP.
To expedite the training process, an optimization subroutine
is embedded in the proposed algorithm to directly obtain the
optimal edge computing resource allocation. Extensive simulation
results are provided to demonstrate that the proposed RL-based
algorithm can significantly reduce the average service delay while
preserving long-term inference accuracy with a high probability.

Index Terms—Sampling rate adaption, inference accuracy,
collaborative DNN Inference, deep reinforcement learning.

I. INTRODUCTION

With the development of advanced neural network tech-
niques and ubiquitous industrial Internet of Things (IoT)
devices, deep neural network (DNN) is widely applied in
extensive industrial IoT applications, such as facility moni-
toring and fault diagnosis [1]. Industrial IoT devices (e.g.,
vibration sensors) can sense the industrial operating envi-
ronment and feed sensing data to a DNN, and then the
DNN processes the sensing data and renders inference results,
namely DNN inference. Although DNN inference can achieve
high inference accuracy as compared to traditional alternatives
(e.g., decision tree), executing DNN inference tasks requires
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extensive computation resource due to tremendous multiply-
and-accumulation operations [2]. A device-only solution that
purely executes DNN inference tasks at resource-constrained
industrial IoT devices, becomes intractable due to prohibitive
energy consumption and a high service delay. For example,
processing an image using AlexNet incurs up to 0.45 W energy
consumption [3]. An edge-only solution which purely offloads
large-volume sensing data to resource-rich edge nodes, e.g.,
access point (AP), suffers from an unpredictable service delay
due to time-varying wireless channel [4]. Hence, neither a
device-only nor an edge-only solution can effectively support
low-delay DNN inference services.

Collaborative inference, which coordinates resource-
constrained industrial IoT devices and the resource-rich
AP, becomes a de-facto paradigm to provide low-delay and
high-accuracy inference services [5]. Within the collaborative
inference, sensing data from industrial IoT devices can be
either processed locally or offloaded to the AP. At industrial
IoT devices, light-weight compressed DNNs (i.e., neural
networks are compressed without significantly decreasing
their performance) are deployed due to constrained on-board
computing capability, which saves computing resource at the
cost of inference accuracy [6], [7]. At the AP, uncompressed
DNNs are deployed to provide high-accuracy inference
services at the cost of network resources. Through the
resource allocation (e.g., task offloading) between industrial
IoT devices and the AP, the overall service performance can
be enhanced.

However, the sampling rate adaption technique that dynam-
ically configures the sampling rates of industrial IoT devices,
is seldom considered. Through dynamically adjusting the sam-
pling rates according to channel conditions and AP’s workload,
sensing data from industrial IoT devices can be compressed,
thereby reducing not only the offloaded data volume, but also
task computation workload. In our experiments, we implement
AlexNet to conduct bearing fault diagnosis based on the
collected bearing vibration signal from dataset [8].1 As shown
in Fig. 1, inference accuracy grows sub-linearly with the
sampling rate. For example, when the sampling rate increases
from 18 KHz to 24 KHz, the accuracy increases from 95%
to 98.7%. Hence, when the channel condition is poor or
edge computation workload is heavy, decreasing the sampling
rate can reduce the offloaded data volume and requested
computation workload, thereby reducing the service delay at

1The experiment is conducted on an open-source dataset [8]. This dataset
collects the vibration signal of drive end bearings at a sampling rate of
48 KHz, and there are 10 types of possible faults.
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the cost of limited inference accuracy. When channel condition
is good and edge computation workload is light, increasing the
sampling rate can help deliver a high-accuracy service with
an acceptable service delay. Hence, sampling rate adaption
can effectively reduce the service delay, which should be
incorporated in the collaborative DNN inference.

The sampling rate adaption and resource allocation for
collaborative DNN inference are entangled with the following
challenges. Firstly, due to time-varying channel conditions and
random task arrivals, sampling rate and resource allocation
should be dynamically adjusted to achieve the minimum
service delay. Minimizing the long-term service delay requires
the stochastic information of network dynamics. Secondly, in
addition to minimizing the service delay, the long-term accu-
racy requirements should be guaranteed for different inference
services. The long-term accuracy performance is determined
by decisions of sampling rate adaption and resource allocation
over time, and hence the optimal decisions require future
network information. To address the above two challenges, a
reinforcement learning (RL) technique is leveraged to interact
with the unknown environment to capture the network dynam-
ics, and then a Lyapunov optimization technique is utilized
within the RL framework to guarantee the long-term accuracy
requirements without requiring future network information.

In this paper, we investigate the collaborative DNN infer-
ence problem in industrial IoT networks. Firstly, we formu-
late the problem as a constrained Markov decision process
(CMDP) to account for time-varying channel conditions and
random task arrivals. Specifically, sampling rates of industrial
IoT devices, task offloading, and edge computation resource
allocation are optimized to minimize the average service delay
while guaranteeing the long-term accuracy requirements of
multiple services. Secondly, since traditional RL algorithms
target at optimizing a long-term reward without considering
policy constraints, they cannot be applied to solve CMDP with
long-term constraints. To solve the problem, we transform the
CDMP into an MDP via the Lyapunov optimization technique.
The core idea is to construct accuracy deficit queues to
characterize the satisfaction status of the long-term accuracy
constraints, thereby guiding the learning agent to meet the
long-term accuracy constraints. Thirdly, to solve the MDP,
a learning-based algorithm is developed based on the deep
deterministic policy gradient (DDPG) algorithm. Within the
learning algorithm, to reduce the training complexity, edge
computing resource allocation is directly solved via an op-
timization subroutine based on convex optimization theory,
since it only impacts one-shot delay performance according
to theoretical analysis. Extensive simulations are conducted
to validate the effectiveness of the proposed algorithm in
reducing the average service delay while preserving the long-
term accuracy requirements.

Our main contributions in this paper are summarized as
follows:

• We formulate the collaborative DNN inference problem
as a CMDP, in which the objective is to minimize the
average service delay while guaranteeing the long-term
accuracy constraints;
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Fig. 1. Inference accuracy with respect to sampling rates on the bearing
vibration dataset [8].

• We transform the CMDP into an MDP via the Lyapunov
optimization technique which constructs accuracy deficit
queue to characterize the satisfaction status of the long-
term accuracy constraints;

• We propose a deep RL-based algorithm to make the
optimal sampling rate adaption and resource allocation
decisions. To reduce the training complexity, an optimiza-
tion subroutine is embedded in the proposed algorithm for
the optimal edge computing resource allocation.

The remainder of this paper is organized as follows. Sec-
tion II reviews related works. The system model and problem
formulation are presented in Section III. Section IV proposes
a learning-based solution. Simulation results are given in
Section V. Finally, Section VI concludes this paper.

II. RELATED WORK

DNN inference for resource-constrained industrial IoT de-
vices has garnered much attention recently. A device-only
solution aims to facilitate DNN inference services resorting
to on-board computing resources. To reduce the computational
complexity, DNN compression techniques are applied, such as
weight pruning [6] and knowledge distillation [9]. Considering
the widely-equipped energy-harvesting functionality in IoT
devices, Gobieski et al. designed a light-weight DNN inference
model, which can dynamically compress the model size in
order to balance inference accuracy and energy efficiency [2].
In another line of research, edge-assisted DNN inference solu-
tions can provide high-accuracy inference services by utilizing
powerful edge computing servers. To facilitate low-delay and
accurate DNN-based video analytics, Yang et al. proposed
an online video quality and computing resource allocation
strategy to maximize video analytic accuracy [10]. Another
inspiring work proposed a novel device-edge collaborative
inference scheme, in which the DNN model is partitioned and
deployed at both the device and the edge, and intermediate
results are transferred via wireless links [5]. The above works
can provide possible resource allocation solutions to enhance
DNN inference performance. Different from existing works,
our work takes the sampling rate adaption of industrial IoT
devices into account, aiming at providing accuracy-guaranteed
inference services in dynamic industrial IoT networks.

RL algorithms have been widely applied in allocating net-
work resources in wireless networks, such as service migra-
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Fig. 2. The collaborative DNN inference framework for industrial IoT devices.

tion in vehicular networks [11], network slicing in cellular
networks [12], content caching in edge networks [13], and
task scheduling in industrial IoT networks [14]. Hence, RL
algorithms are considered as plausible solutions to manage
network resources for DNN inference services. However,
DNN inference services require minimizing the average delay
while satisfying the long-term accuracy constraints. Tradi-
tional RL algorithms, e.g., DDPG, can be applied to solve
MDPs, in which learning agents seek to optimize a long-
term reward without policy constraints, while they cannot deal
with constrained long-term optimization problems [15], [16].
Our proposed deep RL-based algorithm can address long-
term constraints within the RL framework by the modification
of reward based on the Lyapunov optimization technique.
In addition, an optimization subroutine is embedded in our
algorithm to further reduce the training complexity.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As shown in Fig. 2, we consider a wireless network with
one AP to serve multiple types of industrial IoT devices.
The AP is in charge of collecting network information and
resource orchestration within the network. Consider M types
of inference services, denoted by a setM, such as facility fault
diagnosis and facility monitoring services. Taking the facility
fault diagnosis service as an example, vibration sensors in-
stalled on industrial IoT devices sense the operating conditions
at a sampling rate, and feed the sensed vibration signal into a
DNN, then the DNN diagnoses the facility fault type. The set
of industrial IoT devices subscribed to service m is denoted
by Nm, and the set of all industrial IoT devices is denoted by
N = ∪m∈MNm. In the collaborative inference framework,
two types of DNNs are deployed. One is a compressed DNN,
which is deployed at industrial IoT devices. The compressed
DNN can be implemented via the weight pruning technique,
which prunes less-important weights to reduce computational
complexity while maintaining similar inference accuracy [6].
The other is an uncompressed DNN, which is deployed at the
AP. In this way, M types of uncompressed DNNs share the
edge computing resource to serve different inference requests.
Important notations are summarized in Table I.

Table I
SUMMARY OF NOTATIONS.

Notation Description
Am Achieved instantaneous accuracy of service m
Ath

m Long-term accuracy requirement of service m
Bt Local computing queue backlog in time slot t
c Computing resource allocation decision vector
D Service delay
L (·) Lyapunov function
o Task offloading decision vector
Qt Edge computing queue backlog in time slot t
V Parameter to balance delay and accuracy requirement
X Sampling rate selection decision matrix of all devices
Zt Accuracy deficit queue backlog in time slot t
ξn Raw task data size of device n
ηm Task computation intensity of service m
λn Average task arrival rate of device n
ζ
(
xt
n

)
Task data size of device n in time slot t

Ψt Amount of dropped tasks in computing queues

The collaborative DNN inference framework operates in a
time-slotted manner. Let t denote the time index, where t ∈
T = {1, 2, ..., T}. The detailed procedure is given as follows.

1) Sampling rate selection: Industrial IoT devices first
select their sampling rates according to channel condi-
tions and computation workloads. The set of candidate
sampling rates is denoted by K = {θ1, θ2, ..., θK},
where θK denotes the raw sampling rate. We assume
the sampling rate in K increases linearly with the index,
i.e., θk = kθK/K. Let Xt denote the sampling rate
decision matrix in time slot t, whose element xtn,k = 1
indicates industrial IoT device n ∈ N selects the k-th
sampling rate.

2) Task processing: The sensing data from industrial IoT
devices within a time slot is deemed as a computation
task, which can be either offloaded to the AP or executed
locally. Let ot ∈ R|N |×1 denote the offloading decision
vector in time slot t, whose element otn = 0 indicates
offloading the computation task from industrial IoT
device n. Otherwise, otn = 1 indicates executing the
computation task locally.

B. Service Delay Model

A computation task can be either processed locally or
offloaded to the AP. In what follows, we analyze the service
delay in these two cases.

1) Executing locally: Let λtn denote the task arrival rate
of the n-th industrial IoT device in time slot t, which is
assumed to follow a general random distribution. The raw
data size of the generated tasks at the n-th device is denoted
by ξtn = λtnνm,∀n ∈ Nm, where νm denotes the raw data
size of a task for service m. After the sampling rate is
selected, the data size of the generated task is represented
by ζ (xtn) =

∑K
k=1 x

t
n,kξ

t
nk/K, where xtn = {xtn,k}k∈K is

the sampling rate selection decision vector of the n-th device.
When the inference task is processed locally by a compressed
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DNN, the service delay includes the queuing delay in the local
computing queue and task processing delay, which is given by

dtn,l =
otnηm,c (Btn + ζ (xtn))

fn
,∀n ∈ Nm, (1)

where fn is the CPU frequency of the n-th industrial IoT
device, and ηm,c denotes the computation intensity of the
compressed DNN for the m-th service. Here, Btn is the
backlogged computation tasks (in bits) in the local computing
queue, which is updated via

Bt+1
n = min

{[
Btn + otnζ

(
xtn
)
− fnτ

ηm,c

]+

, Bmaxn

}
, (2)

where [x]
+

= max{x, 0}, Bmaxn is the capacity of the local
computing queue, and τ is the duration of a time slot. Tasks
will be dropped if the local computing queue is full. Let

Ψt
b,n = max

{
Btn + otnζ

(
xtn
)
− fnτ

ηm,c
−Bmaxn , 0

}
(3)

denote the amount of the dropped tasks in the local computing
queue of device n. Here, Ψt

n,b > 0 indicates that an event of
local computing queue overflow occurs at the n-th device,
and the corresponding penalty will be incurred to avoid queue
overflow.

2) Offloading to AP: When a task is offloaded to the AP,
it will be processed by an uncompressed DNN. The service
delay consists of task offloading delay, queuing delay in the
edge computing queue, and task processing delay, which are
analyzed respectively as follows.

• Task offloading delay: For the n-th industrial IoT device,
the offloading delay is given by

dtn,o =
(1− otn) ζ (xtn)

Rtn
, (4)

where transmission rate between the n-th industrial IoT
device and the AP, Rtn, is given by

Rtn =
W

N
log2

(
1 +

PTG(Ht
n)

Nfσ2

)
. (5)

Here, W , PT , G(Ht
n), and Nf represent the system band-

width, transmit power, channel gain, and noise figure, re-
spectively. σ2 = NoW/N denotes the background noise
where No is thermal noise spectrum density. Channel gain
G(Ht

n) varies in terms of channel state Ht
n. Based on

extensive real-time measurements, channel state Ht
n can

be modeled with a finite set of channel states H [17]. The
evolution of channel states is characterized by a discrete-
time and ergodic Markov chain model, whose transition
matrix is P ∈ R|H|×|H|.

• Task processing delay: The tasks from all industrial IoT
devices subscribed to the m-th service are placed in the
edge computing queue for the m-th service. The amount
of aggregated tasks is given by

∑
n∈Nm (1− otn) ζ (xtn).

The computing resource is dynamically allocated among
multiple services at the AP according to service task
arrivals, which can be realized via containerization tech-
niques, such as Dockers and Kubernetes [18]. Let ct ∈

RM×1 denote the computing resource allocation decision
vector in time slot t. Each element 0 ≤ ctm ≤ 1 denotes
the portion of computing resource allocated to the m-th
service. Hence, the processing delay is given by

dtn,p =
ηm,u (1− otn) ζ (xtn)

ctmfb
,∀n ∈ Nm, (6)

where fb is the CPU frequency of the computing server
at the AP, and ηm,u denotes the computation intensity
of processing the m-th service task by the uncompressed
DNN. Note that ηm,u > ηm,c, since the uncompressed
DNN consumes more computing resource.

• Queuing delay: The queuing delay consists of two com-
ponents: (i) the time taken to process backlogged tasks
in the edge computing queue, which is given by

dtn,q =
Qtmηm,u
ctmfb

,∀n ∈ Nm. (7)

Here, Qtm denotes the edge computing queue backlog for
the m-th service in time slot t, which is updated according
to

Qt+1
m = min

{[
Qtm + atm −

ctmfbτ

ηm,u

]+

, Qmaxm

}
. (8)

Here, atm =
∑
n∈Nm (1− otn) ζ (xtn) and Qmaxm denotes

the capacity of the m-th edge computing queue. Similar
to that in local computing queues, tasks will also be
dropped if the edge computing queue is full, and the
amount of dropped tasks for the m-th edge computing
queue is given by

Ψt
q,m = max

{
Qtm + atm −

ctmfbτ

ηm,u
−Qmaxm , 0

}
. (9)

Here, Ψt
q,m > 0 indicates that an event of edge computing

queue overflow occurs; and (ii) average waiting time
among all newly arrived tasks until the task of industrial
IoT device n is processed, which is given by

dtn,w =
ηm,u

∑
i 6=n,i∈Nm (1− oti) ζ (xti)

2ctmfb
. (10)

Here,
∑
i 6=n,i∈Nm (1− oti) ζ (xtn) denotes the amount of

aggregated tasks except the task of industrial IoT de-
vice n.

Taking both local execution and offloading into account, the
service delay in time slot t is given by

D
(
Xt,ot, ct

)
=
∑
n∈N

(
dtn,l + dtn,o + dtn,p + dtn,q + dtn,w

)
+ wp

(∑
n∈N

1{Ψtb,n>0} +
∑
m∈M

1{Ψtq,m>0}

)
,

(11)

where 1{x} = 1 and wp > 0 are the indicator function and
the positive unit penalty cost for queue overflow, respectively.
The first term represents the experienced delay to complete all
tasks in time slot t. The second term represents the penalty for
potential overflow events in local and edge computing queues.



5

C. Inference Accuracy Model

The inference accuracy depends on the sampling rate of a
task and the type of DNN that executes a task. Firstly, we
characterize the relationship between the inference accuracy
and the sampling rate, which is specified by accuracy function
g(θk),∀θk ∈ K. Specifically, we implement a DNN inference
algorithm, i.e., AlexNet [19], and apply the AlexNet to diag-
nose facility fault type based on the collected bearing vibration
signal from the dataset [8], and then measure the accuracy
function values with respect to sampling rates, as shown
in Fig. 1. Secondly, the relationship between the inference
accuracy and the type of DNN is also characterized via
experiments. Here, hm,c and hm,u represent the inference
accuracy of the compressed DNN and the uncompressed DNN
for the m-th service, respectively. Note that, hm,c < hm,u,
as an uncompressed DNN achieves higher fault diagnosis
accuracy.

Since the DNN model selection (i.e., task offloading de-
cision) and the sampling rate selection are independent,
inference accuracy is the product of the accuracy value
with respect to the selected sampling rate and the accu-
racy value with respect to the selected DNN type, i.e.,
g
(∑

k∈K x
t
n,kθk

)
(otnhm,c + (1− otn)hm,u). Hence, the av-

erage inference accuracy for the m-th service in time slot t
can be given by

Am
(
Xt,ot

)
=
∑
n∈Nm

1

|Nm|
g

(∑
k∈K

xtn,kθk

)
·(

otnhm,c +
(
1− otn

)
hm,u

)
.

(12)

Note that the model can be readily extended to cases when
other inference methods are adopted, since the accuracy values
with respect to sampling rates and DNN types are obtained via
practical experiments.

D. Problem Formulation

DNN inference services require not only minimizing service
delay, but also guaranteeing their long-term accuracy require-
ments, which can be modeled via a CMDP. Its action, state,
reward, and state transition matrix are defined as follows:
• Action: The action includes the sampling rate selection,

task offloading, and edge computing resource alloca-
tion decisions, i.e., ât = {Xt,ot, ct}. Note that the
components of the action should satisfy following con-
straints: (1) xtn,k ∈ {0, 1} constrains the sampling rate
selection decision; (2) otn ∈ {0, 1} requires the binary
task offloading decision; and (3)

∑
m∈M ctm ≤ 1 and

0 ≤ ctm ≤ 1 constrain a continuous computing resource
allocation decision.

• State: The state includes local computing queues backlog
of industrial IoT devices Btn, edge computing queues
backlog Qtm, channel conditions of industrial IoT devices
Ht
n, and the raw data size of the generated tasks at

industrial IoT devices ξtn, i.e.,

ŝt ={{Btn}n∈N , {Qtm}m∈M, {Ht
n}n∈N , {ξtn}n∈N }.

(13)

The queue backlogs, i.e., {Btn}n∈N and {Qtm}m∈M,
adopt a unit in bits, which result in large state space,
especially for a large number of industrial IoT devices.

• Reward: The reward is designed to minimize the service
delay in (22) in time slot t, which is defined as r̂t =
−D (Xt,ot, ct) .

• State transition probability: State transition probability is
given by

Pr
(
ŝt+1|ŝt, ât

)
=
∏
n∈N

Pr
(
Bt+1
n |Btn, xtn,k, otn

)
·∏

m∈M
Pr
(
Qt+1
m |Qtm,Xt,ot

)
·∏

n∈N
Pr
(
Ht+1
n |Ht

n

)
·
∏
n∈N

Pr
(
ξt+1
n |ξtn

)
.

(14)

The equality holds due to the independence of different
state components. The first two components are gov-
erned by the evolution of local computing queues and
edge computing queues in (2) and (8), respectively. The
third component is evolved according to the discrete-
time Markov chain of channel conditions, and the last
component is governed by the memoryless task arrival
pattern. Note that each of those state components only
depends on its previous state components, which means
the state transition is Markovian.

Our goal is to find a stationary policy π ∈ Π that dynam-
ically configures sampling rates selection Xt, task offload-
ing ot, and edge computing resource allocation ct according
to state ŝt, to minimize the service delay while guaranteeing
long-term inference accuracy requirements {Athm}m∈M, which
is formulated as the following problem:

P0 : min
π∈Π

lim
T→∞

1

T

T∑
t=1

Eπ
[
D
(
Xt,ot, ct

)]
(15a)

s.t. lim
T→∞

1

T

T∑
t=1

Am
(
Xt,ot

)
≥ Athm ,∀m ∈M. (15b)

Here, P0 is a CMDP. Directly solving the above CMDP via
dynamic programming solutions [15] is challenging due to
the following reasons. Firstly, state transition probability is
unknown due to the lack of statistic information on the channel
condition variation and task arrival patterns of all industrial
IoT devices. Secondly, even the state transition probability
is known, large action space and state space that grow with
respect to the number of industrial IoT devices incur an ex-
tremely high computational complexity, which makes dynamic
programming solutions intractable. Hence, we propose a deep
RL-based algorithm to solve the CMDP, which can be applied
in large-scale networks without requiring statistic information
of network dynamics.

IV. DEEP RL-BASED SAMPLING RATE ADAPTION AND
RESOURCE ALLOCATION ALGORITHM

As mentioned before, a CDMP problem cannot be directly
solved via traditional RL algorithms. We first leverage the
Lyapunov optimization technique to deal with the long-term
constraints and transform the problem into an MDP. Then,
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we develop a deep RL-based algorithm to solve the MDP.
To further reduce the training complexity, an optimization
subroutine is embedded to directly obtain the optimal edge
computation resource allocation.

A. Lyapunov-Based Problem Transformation

The major challenge in solving problem P0 is to han-
dle the long-term constraints. We leverage the Lyapunov
technique [20], [21] to address this challenge. The core
idea is to construct accuracy deficit queues to characterize
the satisfaction status of the long-term accuracy constraints,
thereby guiding the learning agent to meet the long-term
accuracy constraints. The problem transformation procedure
is presented as follows.

Firstly, we construct inference accuracy deficit queues for
all services, whose dynamics evolves as follows:

Zt+1
m =

[
Athm −Am

(
Xt,ot

)
+ Ztm

]+
,∀m ∈M. (16)

Here, Ztm indicates the deviation of the achieved instantaneous
accuracy from the long-term accuracy requirement, whose
initial state is set to Z0

m = 0. Then, a Lyapunov function
is introduced to characterize the satisfaction status of the
long-term accuracy constraint, which is defined as L (Ztm) =
(Ztm)

2
/2 [20]–[22]. A smaller value of L (Ztm) indicates

better satisfaction of the long-term accuracy constraint.
Secondly, the Lyapunov function should be consistently

pushed to a low value in order to guarantee the long-term
accuracy constraints. Hence, we introduce a one-shot Lya-
punov drift to capture the variation of the Lyapunov function
across two subsequent time slots [20]. Given Ztm, the one-shot
Lyapunov drift is defined as ∆ (Ztm) = L

(
Zt+1
m

)
− L (Ztm),

which is upper bounded by

∆
(
Ztm
)

=
1

2

((
Zt+1
m

)2 − (Ztm)2)
≤ 1

2

((
Ztm +Athm −Am

(
Xt,ot

))2 − (Ztm)2)
=

1

2

(
Athm −Am

(
Xt,ot

))2
+ Ztm

(
Athm −Am

(
Xt,ot

))
≤ Cm + Ztm

(
Athm −Am

(
Xt,ot

))
,

(17)

where Cm =
(
Athm −Aminm

)2
/2 is a constant, and Aminm is the

lowest inference accuracy that can be achieved for service m.
The first inequality is due to the substitution of (16), and the
second inequality is because Am (Xt,ot) ≥ Aminm .

Thirdly, based on the Lyapunov optimization theory, the
original CMDP of minimizing the service delay while guar-
anteeing the long-term accuracy requirements boils down to
minimizing a drift-plus-cost, i.e.,∑

m∈M
∆
(
Ztm
)

+ V ·D
(
Xt,ot, ct

)
≤
∑
m∈M

Cm +
∑
m∈M

Ztm
(
Athm −Am

(
Xt,ot

))
+ V ·D

(
Xt,ot, ct

)
,

(18)

where the inequality is due to the upper bound in (17). Here
V is a positive parameter to adjust the tradeoff between the

service delay minimization and the satisfaction status of the
long-term accuracy constraints. The underlying rationale is
that, if the long-term accuracy constraint is violated, i.e.,
Ztm > 0, stratifying the long-term constraints by improving the
instantaneous inference accuracy becomes more urgent than
reducing the service delay.

In this way, the CMDP is transformed into an MDP with
the objective of minimizing the drift-plus-cost in each time
slot.

B. Equivalent MDP

In the equivalent MDP, the action, state, reward, and state
transition matrix are modified as follows due to the incorpo-
ration of accuracy deficit queues.
• Action: The action is the same as that in the CMDP, i.e.,
at = ât = {Xt,ot, ct}.

• State: Compared with the state of the CMDP, the accuracy
deficit queue backlog of services {Ztm}m∈M should be
incorporated, i.e.,

st = {ŝt, {Ztm}m∈M}. (19)

• Reward: The reward is modified to minimize the drift-
plus-cost in (18) in time slot t, i.e.,

rt = −V ·D
(
Xt,ot, ct

)
−
∑
m∈M

Ztm
(
Athm −Am

(
Xt,ot

))
. (20)

Note that the constant term
∑
m∈M Cm in (18) is ignored

in the reward for brevity.
• State transition probability: Since accuracy deficit queue

backlogs are incorporated in the state, the state transition
probability evolves according to

Pr
(
st+1|st, at

)
= Pr

(
ŝt+1|ŝt, ât

)
·∏

m∈M
Pr
(
Zt+1
m |Ztm,Xt,ot

)
. (21)

where the second term is the evolution of the accuracy
deficit queue backlog according to (16). Note that the
overall state transition is still Markovian.

Then, problem P0 is transformed into the following MDP
problem:

P1 : min
π∈Π

lim
T→∞

1

T

T∑
t=1

Eπ

[ ∑
m∈M

Ztm
(
Athm −Am

(
Xt,ot

))
+V ·D

(
Xt,ot, ct

)]
.

(22)

Similar to CMDP, solving an MDP via dynamic programming
solutions also suffers from the curse of dimensionality due
to large state space. Hence, we propose a deep RL-based
algorithm to solve the MDP, which is detailed in Section IV-D.

C. Optimization Subroutine for Edge Computing Resource
Allocation

Although P1 can be directly solved by RL algorithms, an
inherent property on edge computing resource allocation can
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be leveraged, in order to reduce the training complexity of
RL algorithms. Through analysis on (22), the edge computing
resource allocation is independent of the inference accuracy
performance, and hence it only impacts the one-shot service
delay performance. In time slot t, once task offloading and
sampling rate selection decisions are made, the optimal com-
puting resource allocation decision can be obtained via solving
the following optimization problem:

P2 : min
ct

D
(
Xt,ot, ct

)
s.t.

∑
m∈M

ctm ≤ 1 (23a)

0 ≤ ctm ≤ 1. (23b)

A further analysis of (11) indicates that only the task
processing delay and queuing delay at the AP are im-
pacted by the edge computing resource allocation, i.e.,∑
n∈N

(
dtn,p + dtn,q + dtn,w

)
. In addition, the aggregated de-

lay from the perspective of all devices is equivalent to the
aggregated delay from the perspective of all services. Hence,
the objective function in P2 can be rewritten as

∑
m∈M dtm,

where

dtm =
∑
n∈Nm

(
ηm,u (1− otn) ζ (xtn)

ctmfb
+
Qtmηm,u
ctmfb

+
ηm,u

∑
i6=n,i∈Nm (1− oti) ζ (xti)

2ctmfb

) (24)

denotes the experienced delay of the m-th service. By ana-
lyzing the convexity property of the problem, we have the
following theorem to obtain the optimal edge computation
resource allocation in each time slot.

Theorem 1. The optimal edge computing resource allocation
for problem P2 is given by

ct,?m =

√
Λtm∑

m∈M
√

Λtm
,∀m ∈M, (25)

where

Λtm =
∑
n∈Nm

(
ηm,u

(
1− otn

)
ζ
(
xtn
)

+Qtmηm,u

+
ηm,u

2

∑
i6=n,i∈Nm

(
1− oti

)
ζ
(
xti
) .

(26)

Proof. Proof is provided in Appendix A.

This optimization subroutine for the edge computing re-
source allocation is embedded in the following proposed deep
RL-based algorithm. In this way, the training complexity can
be reduced, because it is no longer necessary to train the neural
networks to obtain optimal edge computing resource allocation
policy.

D. Deep RL-based Algorithm

To solve problem P1, we propose a deep RL-based al-
gorithm, which is extended from the celebrated DDPG al-
gorithm [23]. The main difference between DDPG and the

Algorithm 1: Deep RL-based algorithm for sampling
rate adaption and resource allocation

1 Initialization: Initialize all neural networks and the
experience replay memory;

2 for each episode do
3 Reset the environment and obtain initial state s0;
4 for time slot t ∈ T do
5 Determine the sampling rate selection and task

offloading actions {Xt,ot} by the actor
network according to current state st;

6 Determine edge computing resource allocation
action ct by (25);

7 Send joint action at = {Xt,ot, ct} to all
industrial IoT devices by the AP;

8 Execute the joint action at industrial IoT
devices;

9 Observe reward rt and new state st+1;
10 Store transition {st, at, rt, st+1} in the

epxerience replay memory;
11 Sample a random minibatch transitions from

the epxerience replay memory;
12 Train the critic and actor network by (27) and

(28), respectively;
13 Update target networks by (29);
14 end
15 end

proposed algorithm is that the above optimization subroutine
for computing resource allocation is embedded to reduce the
training complexity. The proposed algorithm can be deployed
at the AP, which collects the entire network state information
and enforces the policy to all connected industrial IoT devices.

In the algorithm, the learning agent has two parts: (a) an
actor network, which is to determine the action based on the
current state; and (b) a critic network, which is to evaluate
the determined action based on the reward feedback from the
environment. Let µ(s|φµ) and Q(s, a|φQ) denote the actor
network and the critic network, respectively, whose neural
network weights are φµ and φQ. As shown in Algorithm 1, the
deep RL-based algorithm operates in a time-slotted manner,
which consists of the following three steps.

The first step is to obtain experience by interacting with
the environment. Based on current network state st, the
actor network generates the sampling rate selection and task
offloading actions with an additive policy exploration noise
that follows Gaussian distribution N

(
0, σ2

)
. The optimization

subroutine generates the edge computation resource allocation
action. Then, the joint action is executed at all industrial
IoT devices. The corresponding reward rt and the next state
st+1 are observed from the environment. The state transition
{st, at, rt, st+1} is stored in the experience replay memory for
actor and critic network training.

The second step is to train the actor and critic network
based on the stored experience. To avoid the divergence issue
caused by DNN, a minibatch of transitions are randomly sam-
pled from the experience replay memory to break experience
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Table II
SIMULATION PARAMETERS [24], [25].

Parameter Value
Thermal noise spectrum density (No) −174 dBm/Hz [25]

Communication bandwidth (W ) [5, 25] MHz
Transmit power (PT ) 20 dBm [24]

Average task arrival rate (λ) [0.6, 1] request/sec
Noise figure (Nf ) 5 dB

Intensity of compressed DNN (η1,c, η2,c) (80, 160) cycles/bit
Intensity of uncompressed DNN (η1,u, η2,u) (200, 400) cycles/bit

Device and edge server CPU frequency (fn, fb) (0.1, 2) GHz
Number of Type I/II devices (N1, N2) 5, 5

Time slot duration (τ) 1 second
Balance parameter (V) 0.05

Unit penalty for queue overflow (wp) 1
Accuracy of compressed DNN (h1,c, h2,c) 0.8, 0.8

Accuracy of uncompressed DNN (h1,u, h2,u) 1, 1
Local/edge queue capacity (Bmax, Qmax) (3.84, 19.2) megabits

Table III
PARAMETERS OF THE PROPOSED RL-BASED ALGORITHM.

Parameter Value Parameter Value
Actor learning rate 10−4 Critic learning rate 10−3

Actor hidden units (64, 32) Critic hidden units (64, 32)
Hidden activation ReLU Actor output activation Tanh

Optimizer Adam Policy noise (σ) 0.2
Target update (δ) 0.005 Discount factor 0.85

Minibatch size 64 Replay memory size 100,000
Training episodes 1, 000 Time slots per episode 200

correlation. The critic network is trained by minimizing the
loss function

Loss
(
φQ
)

=
1

Nb

Nb∑
i=1

(
yi −Q(si, ai|φQ)

)2
, (27)

where yi = ri + γQ′(si+1, µ
′(si+1|φµ

′
)|φQ′

), and Nb is the
minibatch size. Here, µ′(s|φµ′

) and Q′(s, a|φQ′
) represent

actor and critic target networks with weights φµ
′

and φQ
′
.

The actor network is trained via the policy gradient

∇φµ ≈
1

Nb

Nb∑
i=1

∇aQ(si, a|φQ)|s=si,a=µ(si)∇θµµ(si|φµ)|si .

(28)
The third step is to update target networks. In order to ensure

network training stability, the actor and critic target networks
are softly updated by

φQ
′

= δφQ + (1− δ)φQ
′
, φµ

′
= δφµ + (1− δ)φµ

′
, (29)

where 0 < δ � 1 denotes the target network update ratio.

V. SIMULATION RESULTS

A. Simulation Setup

We consider a smart factory scenario in our simulation,
in which industrial IoT devices, e.g., vibration sensors, are
randomly scattered. The industrial IoT devices installed on
industrial facilities (e.g., robot arms) sense their operating
conditions. The sensing data is processed locally or offloaded
to an AP in the smart factory for processing. The transmit
power of an industrial IoT device is set to 20 dBm [24]. The
channel condition is modeled with three states, i.e., “Good
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Fig. 3. Performance of the proposed algorithm in the training stage.

(G)”, “Normal (N)”, and “Bad (B)”, and the corresponding
transition matrix is given by [17]

P =

PGG PGN 0
PNG PNN PNB

0 PNB PBB

 =

 0.3 0.7 0
0.25 0.5 0.25

0 0.7 0.3

 . (30)

Two types of DNN inference services are considered. Type
I service: a facility fault diagnosis service to identify the fault
type based on the collected bearing vibration signal from the
dataset [8]. Since the duration of a time slot in the simulation
is set to be one second, the task data size is the data volume of
a one-second signal, which is a product of the raw sampling
rate and the quantization bits of the signal. In the dataset,
the bearing vibration signal is collected at 48 KHz sampling
rate and 16 bit quantization, and hence the corresponding task
data size is 768 kilobits. The long-term accuracy requirement
of the service is set to 0.8. Type II service: a service extended
from the Type I service to diagnose facility fault based on
a low-grade bearing vibration dataset while requiring higher
inference accuracy 0.9. The low-grade dataset collects vibra-
tion signal at a lower sampling rate of 32 KHz, and hence
the task data size is 512 kilobits. For both services, the task
arrival rate of each industrial IoT device at each time slot
follows a uniform distribution U(λ − 0.5, λ + 0.5), where λ
is the average task arrival rate. We consider four candidate
sampling rates for industrial IoT devices, which are 25%, 50%,
75% and 100% of the raw sampling rate. The corresponding
accuracy with respect to the sampling rates are 0.59, 0.884,
0.950 and 0.987, respectively, based on extensive experiments
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Fig. 4. Service delay performance with respect to task arrival rates.
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Fig. 5. Inference accuracy performance with respect to task arrival rates.

on the bearing vibration dataset [8]. Balance parameter V is
set to 0.05 based on extensive simulations. Other important
simulation parameters are listed in Table II. The parameters
of the proposed algorithm are given in Table III. The proposed
algorithm is compared to the following benchmarks:
• Delay myopic: Each industrial IoT device dynamically

makes sampling rate selection and task offloading deci-
sions by maximizing the one-step reward in (20) accord-
ing to the network state.

• Static configuration: Each industrial IoT device takes
a static configuration on the sampling rate selection and
task offloading decisions, which can guarantee services’
accuracy requirements.

B. Performance Evaluation

1) Convergence of the proposed algorithm: The service
delay performance in the training stage is shown in Fig. 3(a).
We can clearly see that the average service delay gradually de-
creases as the increase of training episodes, which validates the
convergence of the proposed algorithm. In addition, Fig. 3(b)
shows the accuracy performance for both services with respect
to training episodes. The accuracy performance is not good at
the beginning of the training stage, but after 1,000 episodes
of training, the accuracy performance converges to the pre-
determined requirements.

2) Impact of task arrival rate: Once well-trained offline,
we evaluate the performance of the proposed algorithm in
the online inference. As shown in Fig. 4, we compare the
average service delay performance of the proposed algorithm
with benchmark schemes in terms of task arrival rates for
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Fig. 6. Service delay performance with respect to communication bandwidth.
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Fig. 7. Service delay in terms of CPU frequency of the edge server.

W = 20 MHz. Each simulation point is plotted with a 95%
confidence interval. Several observations can be obtained from
the figure. Firstly, the service delay increases with the task
arrival rate due to constrained communication and computing
resources in the network. Secondly, the proposed algorithm
significantly outperforms benchmark schemes. The reason is
that the proposed RL-based algorithm can capture network dy-
namics, such as the task arrival pattern and channel condition
variation, via interacting with the environment. The learned
knowledge is utilized to make online decisions that target at the
long-term performance, while benchmark schemes only focus
on the short-term performance and do not adapt to network
dynamics. Specifically, the proposed algorithm can reduce
the average service delay by 19% and 25%, respectively, as
compared with delay myopic and static configuration schemes.

As shown in Fig. 5, boxplot accuracy distribution of two
services is presented with respect to different task arrival rates.
The long-term accuracy requirements for two services are 0.8
and 0.9, respectively. It can be seen that the proposed algo-
rithm guarantees the long-term accuracy requirements of both
services with a high probability. Specifically, the maximum
error probability is less than 0.5%.

3) Impact of communication bandwidth: Fig. 6 shows the
impact of communication bandwidth on the average service
delay. Firstly, we can see that the average service delay
decreases as the growth of bandwidth. The reason is that
the transmission delay is reduced when the communication
resource becomes sufficient. In addition, the proposed al-
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gorithm achieves good performance when the bandwidth is
scarce. When system bandwidth is only 5 MHz, the proposed
algorithm achieves 1.20× and 1.42× delay reduction com-
pared with delay myopic and static configuration schemes,
respectively, which is larger than that when the system band-
width is 25 MHz (1.15× and 1.31×). The reason is that the
proposed algorithm efficiently utilizes the on-board computing
resources. Simulation results show that the proposed algorithm
decides 47.5% computation tasks to be executed locally with
5 MHz bandwidth, while the delay myopic benchmark only
decides 17%. Due to the efficient resource orchestration among
industrial IoT devices and the AP, the proposed algorithm can
effectively reduce average service delay for both services.

4) Impact of optimization subroutine: As shown in Fig. 7,
we evaluate the performance of the proposed algorithm
with the fixed computing resource allocation (referred to as
proposed-fixed), in which the edge computing resource is
allocated based on the average computing demand of two
services. Compared with the proposed-fixed solution, the pro-
posed algorithm achieves significant performance gain when
the edge computing resource is constrained. Specifically, the
performance gain in reducing the service delay decreases
from 1.98× at 1 GHz CPU frequency to only 1.02× at
1.2 GHz CPU frequency. The reason is that efficient resource
allocation is more important in resource-constrained scenarios,
as compared to resource-rich scenarios. The results validate
the effectiveness of the optimization subroutine for edge
computing resource allocation. In addition to the performance
gain, another merit of the optimization subroutine is to reduce
the training complexity of RL algorithms.

VI. CONCLUSION

In this paper, we have studied the sampling rate adaption
and resource allocation problem for collaborative DNN infer-
ence in industrial IoT networks. A deep RL-based algorithm
has been developed to determine the channel variation and
the task arrival pattern which are then exploited to provide
accuracy-guaranteed DNN inference services. The proposed
algorithm can optimize service delay performance on the fly,
without requiring statistic information of network dynamics.
The Lyapunov-based transformation technique can be applied
to other CMDPs. For the future work, we will investigate the
impact of device mobility on the inference performance.

APPENDIX

A. Proof of Theorem 1
Firstly, the problem is proved to be a convex optimization

problem. For brevity of notations, we omit t in the proof. With
the definition of Λm in (26), the objective function can be
rewritten as

∑
m∈M Λm/(cmfb). The second-order derivative

of the objective function shows 2Λm/
(
fbc

3
m

)
> 0. In addition,

the inequality constraint is linear. Hence, the problem is a
convex optimization problem.

Secondly, a Lagrange function for the problem without
considering the inequality constraints is constructed, i.e.,

L (c, a) =
∑
m∈M

Λm
cmfb

+ a

( ∑
m∈M

cm − 1

)
, (31)

where a denotes the Lagrange multiplier. Based on Karush-
Kuhn-Tucker conditions [26], we have

∂L (c, a)

∂cm
= − Λm

fbc2m
+ a = 0,∀m ∈M. (32)

By solving the above equation, we can obtain c?m =√
Λm/afb,∀m ∈ M. Substituting the above result into the

complementary slackness condition
∑
m∈M c?m − 1 = 0, the

optimal value of a is given by a? =
(∑

m∈M
√

Λm
)2
/fb.

From the above equation, a? takes a positive value, and
hence {c?m}m∈M are positive values, which means constraint
(23b), i.e., ctm ≥ 0,∀m ∈ M, is automatically satisfied.
Substituting a? into the complementary slackness condition
proves Theorem 1.
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