
1

Efficient Model Training in Edge Networks with
Hierarchical Split Learning

Songge Zhang, Student Member, IEEE, Wen Wu, Senior Member, IEEE, Lingyang Song, Fellow, IEEE,
and Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—In this paper, we propose an efficient model training scheme, named Group-based Hierarchical Split Learning (GHSL),
which can accelerate the artificial intelligence (AI) training process in edge networks in a “first-sequential-then-parallel” manner.
Specifically, the proposed scheme hierarchically splits an AI model into a user-side and server-side model, while dividing a number of
users into multiple groups. Users in each group train user-side models with the interaction of the shared server-side model
sequentially; different groups perform the above training process parallelly; the AI models of each group are aggregated into a global
model. We also carry out the convergence analysis for the proposed scheme over non-independent and identically distributed data,
which reveals that the convergence rate depends on user grouping. Furthermore, we propose a data-driven two-stage user grouping
algorithm to minimize the overall training delay, taking user resource heterogeneity and the black-box training process into account.
The proposed algorithm first utilizes the Gaussian process regression approach to determine the number of groups, and then employs
the coalition game theory to determine the optimal user grouping decision. Comprehensive simulation results demonstrate that the
proposed scheme can reduce training delay, user-side computational workload, and communication overhead by up to 19%, 53%, and
54%, respectively, comparing to state-of-the-art benchmarks.

Index Terms—Hierarchical split learning, convergence analysis, user grouping.

✦

1 INTRODUCTION

Fuelled by powerful computing servers and well-curated
datasets, artificial intelligence (AI) techniques have facil-
itated a number of applications across a wide range of
fields, such as facial recognition, speech recognition, and au-
tonomous driving [1]–[5]. Supporting these applications re-
quires training AI models on large user datasets. While cen-
tralizing data collection consumes significant bandwidth,
slows down training, and raises privacy issues [6]–[8]. To
enable training with vast amounts of private data in edge
networks, edge AI, e.g., federated learning (FL), is a poten-
tial paradigm. FL allows AI models to be trained locally on
multiple users [9], which still encounters several issues in
mobile edge networks due to the limited computing and
communication capabilities of users. With the increase of
the data size of the state-of-the-art AI models,1 uploading
the model from mobile users to the edge server results in

Songge Zhang is with the School of Electronic and Computer Engineer-
ing, Peking University Shenzhen Graduate School, Shenzhen, 518055,
China, and also with the Frontier Research Center, Pengcheng Labora-
tory, Shenzhen, 518055, China (email: zhangsongge@stu.pku.edu.cn);

Wen Wu is with the Frontier Research Center, Pengcheng Laboratory,
Shenzhen, 518055, China (email: wuw02@pcl.ac.cn);

Lingyang Song is with the State Key Laboratory of Advanced Optical
Communication Systems and Networks, School of Electronics, Peking
University, Beijing, 100871, China, and also with the School of Electronic
and Computer Engineering, Peking University Shenzhen Graduate
School, Shenzhen, 518055, China (e-mail: lingyang.song@pku.edu.cn);

Xuemin (Sherman) Shen is with the Department of Electrical and
Computer Engineering, University of Waterloo, Waterloo, N2L 3G1,
Canada (email: sshen@uwaterloo.ca).

The corresponding author is Wen Wu.

1. The data sizes of AlexNet and VGG16 are more than 200 MB and
500 MB, respectively [10], [11].

significant transmission delay [12]. Training large AI models
also poses significant computation workloads on resource-
limited mobile users [13].

Split learning (SL) is an emerging paradigm that can
effectively reduce the user-side computational workload
as compared to FL. Generally, SL partitions the whole AI
model into the user-side model (i.e., the first few layers)
running on the user and server-side model (i.e., the last
few layers) running on the edge server. In the SL process,
the user first trains the user-side model based on the local
data and then transmits the intermediate results to the edge
server to complete the forward propagation (FP) phase.
Next, in the backward propagation (BP) phase, the edge
server updates the parameters of the server-side model and
returns the corresponding gradients to the user, thus updat-
ing the user-side model. The above process continues until
the model is converged. Since only a part of the AI model
is trained at the device, the user-side computation workload
is reduced compared with the whole AI model training in
FL. In addition, small-volume smashed data and user-side
models are transmitted, such that communication overhead
is reduced compared with whole AI model transmission in
FL. In SL, all users interact with the server in a sequential
manner to complete the training process, such that the train-
ing delay is the sum of all users’ individual training delays.
Hence, the SL scheme suffers from significant training delay
for a large number of users.

Recent works have explored several novel schemes to
accelerate SL by leveraging parallel mechanisms. Thapa
et al. parallelized the training process of multiple user-
side and server-side models to reduce training delay [14].
Wu et al. accelerated model training by dividing users
into multiple clusters and parallelizing user-side models



2

within each cluster [15]. While the existing works focus
on reducing the AI model training delay, the edge server
still needs to store a number of server-side models for each
individual user, which may exhaust storage resources on the
server. Parallelization schemes need to reduce the number
of server-side models and efficiently handle smashed data
from multiple users to improve training efficiency. Hence,
an efficient model training scheme should consider resource
constraints in edge networks and accommodate a large
number of users.

In this paper, we propose an efficient model train-
ing scheme, named Group-based Hierarchical SL (GHSL),
which partitions users into groups and parallelizes the
training process in each group to reduce training delay
and communication overhead. Different from the existing
SL schemes, the proposed scheme does not require storing
server-side models for each user and is not constrained by
the number of smashed data. Specifically, the scheme first
divides users into multiple groups, each group collabora-
tively trained by a server-side model, employing a “first-
sequential-then-parallel” manner. Sequential training entails
that each user in each group sequentially trains their user-
side model using local data, while the server trains its
server-side model using the corresponding smashed data
from the users. After each user updates its model, it passes
the updated user-side model on to the next user for fur-
ther training, ensuring a sequential training pattern within
each group. Parallel training involves multiple groups and
server-side models conducting concurrent training. Once all
users complete training, the latest user-side models from
each group and their corresponding server-side models
are aggregated into a global model for the next round of
training. By leveraging parallel training to reduce per-round
training delay and sequential training to reduce the number
of training rounds, the proposed scheme effectively reduces
the overall training delay.

In addition, we theoretically derive the convergence
upper bound of the proposed scheme over non-independent
and identically distributed (non-IID) data. Analytical re-
sults reveal that the convergence rate depends on data
heterogeneity and the number of users, which highlights
the importance of user grouping to effectively implement
the GHSL scheme. Furthermore, we formulate an overall
training delay minimization problem by optimizing user
grouping. To solve the problem, we propose a data-driven
two-stage user grouping algorithm to address the black-
box nature of the optimization problem. In the first stage,
a Gaussian regression process (GRP)-based algorithm is
proposed to determine the number of groups. In the second
stage, the coalition game theory is utilized to determine the
optimal grouping decision taking user heterogeneity into
account. Extensive simulation results demonstrate that the
proposed scheme outperforms state-of-the-art benchmarks,
reducing the overall training delay by up to 19%, user-side
computational workload by up to 53%, and communication
overhead by up to 54%.

The main contributions of this paper are summarized as
follows:

1) We propose the GHSL scheme to speed up AI
model training in edge networks by leveraging par-

allel training across groups and sequential training
within each group.

2) We analyze the convergence rate of the GHSL over
non-IID data, which depends on the user grouping
strategy.

3) We develop a data-driven user grouping algorithm
to minimize the overall training delay, considering
heterogeneous user resources and black-box train-
ing processes.

The remainder of this paper is organized as follows.
Section 2 provides a review on the related works. Sections 3
and 4 introduce the considered scenario and the proposed
GHSL scheme, respectively. Section 5 presents theoretical
convergence analysis of the proposed scheme. In Section 6,
we analyze training delay and present the problem formu-
lation. Section 7 proposes the two-stage user grouping al-
gorithm. Section 8 showcases the simulation results. Finally,
Section 9 concludes the paper.

2 RELATED WORK

The SL is an emerging paradigm in distributed learning that
has garnered significant attention and research interest in
recent years. In the pioneering study, Gupta et al. introduce
the concept of SL, detailing the AI model training along with
an SL variant [16]. Subsequently, Gao et al. present detailed
comparative analysis between SL and FL, evaluating their
performance across both IID and non-IID data distribution.
The results show that SL has a faster convergence rate
than FL [17]. The work in [18] investigates SL’s advantage,
i.e., it can lessen the user-side computational workload by
dividing the AI model and collectively training. The study
concludes that SL is suitable for scenarios with a large num-
ber of users, while FL is more appropriate for situations with
moderate user scale and smaller models. Recent research in
the field has been directed towards improving the overall
efficiency and reducing the training delay of SL. This is
achieved by enhancing both communication and computing
efficiencies. Several studies have been focusing on reducing
communication overhead by minimizing the volume of data
transmitted in each training epoch [19]–[21]. Specifically,
Gao et al. utilize a combination of image and radio fre-
quency signals to enhance the accuracy of millimeter-wave
power prediction, thereby reducing communication costs
and enhancing the efficiency of multimodal SL [21]. The
strategies are devised to optimize the frequency of model
parameter transmission in [22]–[24], aiming to further cut
down communication overhead. Chen et al. propose a loss-
based asynchronous training scheme to minimize the com-
munication overhead of SL in [24]. In this scheme, while
the server-side model is trained as usual, the user-side
model updates only when the difference in loss compared
to the last update exceeds a predefined threshold. Moreover,
several studies explore enhancing SL’s computing efficiency
by optimizing local computation and inference processes on
users [25]–[27]. Enhancing the computing speed of user-side
models locally (both training and inference time) is another
approach to improve training efficiency. For example, Pham
et al. advocate for the binarization of local SL layers in [27],
aiming to achieve faster computation and reduce memory
usage. Additionally, Samikwa et al. propose an innovative



3

Edge Server

User 1 User 2 User N

User-Side
 Model

Server-Side
 Model

AP

Fig. 1: Considered scenario.

network architecture coupled with horizontal DNN parti-
tioning in [28], aiming to speed up the inference process.
These works speed up SL by reducing communication over-
head or improving computation efficiency, but still suffer
from long training delay with a large number of users [29].

Recently, several hybrid schemes have been proposed to
enhance SL performance. Implementing distributed model
training in edge networks, FL and SL each confront unique
challenges. FL struggles with the necessity of training
complete models on each user’s device, imposing heavy
computational workload; SL is limited by the sequential
training manner, resulting in significant training delay in
the scenarios with a large number of users. The integration
of FL and SL presents a compelling solution, potentially
maximizing their respective benefits while mitigating their
individual drawbacks. Recent research highlighted in [15],
[30]–[32], has concentrated on combining the strengths of
FL and SL to improve the training performance by integrat-
ing FL’s ability for parallel updates across multiple users
with SL’s reduced computing demands on user devices.
Liu et al. propose a hybrid scheme that enables users to
dynamically choose between FL and SL based on their
computing capabilities and network conditions in [30]. This
scheme demonstrates superior learning accuracy compared
to FL alone, and the reduction in communication overhead
in comparison to SL. Further hybridization efforts aim to
enhance SL’s performance by infusing it with FL’s collabo-
rative mechanisms. For instance, Wu et al. propose a CPSL
framework that divides users into groups, wherein multiple
user-side models within a group are trained parallelly based
on local data, and different groups engage in sequential
training with a single server-side model [15]. Yin et al.
present a different scheme that allows for parallel training of
two SL processes simultaneously [31]. This scheme enables
each user to start training a new user-side model training
immediately after one training round ends, which aims to
reduce the training delay. Finally, Xu et al. enhance the
AI model training speed by parallelizing the training of
multiple user-side and server-side models in [32], where
each user collaborates exclusively with a corresponding
server-side model for synchronized training. These works
accelerate SL through parallel training or pipeline training.

Different from these hybrid schemes, the proposed
scheme involves partitioning users into groups. In each
group, users perform sequential training and share a server-

TABLE 1
SUMMARY OF NOTATIONS

Notation Description
αF

m,n,α
B
m,n FP and BP computation workloads for user-side model

αF
s,m,αB

s,m FP and BP computation workloads for server-side model
βm,n Batch size of user n in group m

B Transmission bandwidth
Dn The dataset size of user n

ηs,ηu Learning rates of server-side and user-side models
fs CPU frequency of the server

fm, n CPU frequency of the user n in group m

R(·) Training round function
k(·) Covariance function in GPR
ℓ Lipschitz constant parameter
l Length scale of kernel function parameter

L (·) Global loss function
Lm,n (·) Local loss function for user n in group m

∇Lm,n (·) Gradient of the output layer
T (·) Total training delay in each round
N The set of users

m(·) Mean function in GPR
M The number of groups

Pn,Ps Transmission power of the user and server
Ωs,Ωg Smashed data and cut layer gradient size for user
Ωm,n User-side model parameter size of user n in group m

σ Output variance of kernel function parameter
wu

m,n(t) User-side model of user n in group m

ws
m,n(t) Sever-side model of user n in group m

wu
m(t) Aggregated user-side model in group m

ws
m(t) Aggregated server-side model in group m

side model. Across these groups, training is in parallel. We
further provide convergence analysis under non-IID data.
To further reduce overall delay, we develop a data-driven
two-stage user grouping algorithm to determine the number
of groups and optimal grouping strategies.

3 CONSIDERED SCENARIO

In this paper, we consider a typical edge network scenario,
as shown in Fig. 1. The scenario is composed of the users
and an edge server, which can be described as follows.

• Users: Mobile devices possess their local data and
computing capabilities but are constrained by computation
power. They can train partial DNN models, i.e., user-side
model.

• Edge Server: A wireless access point (AP) is equipped
with an edge server. The AP has high computing capability
and can collect network information, such as communi-
cation link conditions. Another function of the AP is to
perform model aggregation, including server-side and user-
side model aggregation. Instead of deploying a separate
aggregation server, the edge server handles model aggrega-
tion due to its low computational overhead, which can also
avoid communication overhead for transmitting server-side
models to an additional aggregation server.

The set of user is denoted by N = {1, 2, . . . , N}, where
N represents the number of users. Each user n ∈ N has its
own dataset {(xn,1, yn,1) , . . . , (xn,Dn

, yn,Dn
)}, where Dn is

the size of the dataset, and {xn,1, . . . ,xn,Dn
} represent the

raw data and {yn,1, . . . , yn,Dn
} are the corresponding labels.

The total amount of data from all users is D =
∑

n∈N Dn.
Users have their computing capabilities and can train user-
side models based on the input data. The user-side model



4

User-Side 
Model User 1

Server-Side 
Model 1

User �1

Group 1

User 1

User ��

Group M

Server-Side 
Model M

Server-Side Model 
Aggregation

User-Side Model 
Aggregation

AP

Sequential 
training

Edge Server

(a) Proposed GHSL

User-Side 
Model 

User 1

Server-Side 
Model 

User 2

User �

(b) Vanilla SL

Fig. 2: (a) In the GHSL scheme, users within each group are trained sequentially, and the groups are trained parallelly; (b)
in the vanilla SL scheme, users are trained sequentially.

for each user n is defined as wu
n. The AP acts as an

edge server with superior computing power compared to
users and possesses access to network information, such
as communication link conditions. In the context of SL,
the AP trains a server-side model using the intermediate
parameters uploaded by users. The server-side model is
defined as ws. The whole trained model is represented by

w = {wu,ws} . (1)

A summary of important notations in this paper is given in
Table 1.

In the GHSL scheme, individual users employ SL to
collaboratively train a shared model. Each user n ∈ N
trains their user-side model wu

n based on their local dataset.
Simultaneously, the server trains the server-side model ws

n

using the intermediate outputs uploaded by users. The goal
of the system is to jointly optimize the user-side and server-
side models to minimize the global loss function:

L(w) =
1

N

∑
n∈N

Ln(w
u
n,w

s
n), (2)

where the Ln(·, ·) is the loss function for user n.
In the vanilla SL scheme, user-side models are trained

sequentially, with each user training its model one after
another, as shown in Fig. 2b. Once a user completes its
training, the user-side model parameters are then passed
on to the next user for further training. Each training round
continues until all users have finished training. However,
SL’s sequential training manner results in significant train-
ing delay, particularly when there are a large number of
users [33]. To address this issue, we propose a novel group-
based scheme that aims to speed up the model training
process.

4 PROPOSED GHSL SCHEME

In this section, we propose a GHSL scheme designed to
expedite the training process, as depicted in Fig. 2a. The
comprehensive scheme of the GHSL is detailed in Alg. 1.
To reduce the overall delay in the training process, we first
partition users into multiple groups that are parallel-trained.
Let M represent the total number of groups within the set

M, where the set of users in group m is denoted byNm and
the last user in group m is denoted as Nm. The proposed
scheme consists of three steps: model distribution, model
training, and model aggregation. The details are as follows.

1) Model Distribution: Model distribution refers to broad-
casting the user-side model to users at the beginning of
each training round. Specifically, the AP collects the channel
conditions and computing capabilities of the users, then
partitions them into different groups based on Alg. 2 and
Alg. 3. The DNN model is subsequently split into user-
side and server-side components. Finally, the initial user-
side model is transmitted to the first user in each group
through a wireless communication link, initiating the train-
ing process for the current round. For the n-th user in the
m-th group, let wu

m,n(t) and ws
m,n(t) represent the initial

models on the user side and the server side, respectively,
where t ∈ T = {1, . . . , T} denotes the sequence of training
rounds. In each training round, the cut layer of the user
remains unchanged.

2) Model Training: Model training involves model exe-
cution, model updating, and model sharing, which is to
complete the SL process.

2.1) Model Execution: During the training process, data
sampling, user-side model’s FP, and server-side model’s FP
are necessary. Specifically, the mini-batch data for user n
in group m during the t-th training round is denoted by
bm,n(t). It is extracted from the local data dataset as the
input for FP during model training. Then, the user executes
the FP phase of model training, inputs the sampled data into
the user-side model wu

m,n(t), and obtains the smashed data
of the cut layer. For example,

sm,n(t) = h1

(
bm,n(t),w

u
m,n(t)

)
, ∀n ∈ Nm, (3)

where h1 (·) is a function that maps the input layer to
the cut layer. Specifically, h1 (·) can be certain layers in a
DNN model, such as activation layers, pooling layers, or
convolution layers, among others. The sm,n(t) is obtained
after several neural network layer operations and computa-
tions, and it will subsequently be uploaded to the AP. After
receiving the smashed data from the user, the AP will input



5

Algorithm 1 Group-Based Hierarchical Split Learning
(GHSL) Scheme.

Input: B, ηs, ηu, M, and N ;
Output: w⋆;

1 for training round t = 1, 2, . . . , T do
2 ▷ Model Distribution
3 AP collects the computing capabilities and channel con-

ditions of all the users, and then partitions users into
M groups;

4 AP broadcasts the latest user-side model to the first users
in the group m;

5 for each group in parallel do
6 ▷ Model Training
7 for each user do
8 ▷ Model Execution
9 User draws a mini-batch of data samples bm,n(t);

10 User executes user-side model wu
m,n(t) and ob-

tain smashed data sm,n(t);
11 User transmits smashed data to the AP using

wireless link ;
12 AP receives smashed data and executes the

server-side model ws
m,n(t);

13 ▷ Model Updating
14 AP updates the server-side model based on (5);
15 AP transmits the smashed data’s gradient to cor-

responding users;
16 User update the user-side model based on (6);
17 ▷ Model Sharing
18 User sends the latest user-side model to the next

user ;
19 end
20 The last user N in each group sends the latest user-

side model to the AP;
21 end
22 ▷ Model Aggregation
23 AP aggregates server-side models and user-side models

into new models based on (8) and (9).
24 end

it into the server-side model and continue with the FP phase,
i.e.,

rm,n(t) = h2

(
sm,n(t),w

s
m,n(t)

)
, ∀n ∈ Nm. (4)

Once (3) and (4) are complete, the BP process is finished.
2.2) Model Updating: Updates are required for both the

server-side and the user-side models, which aim to mini-
mize the whole model. Specifically, the AP can compute the
loss based on the prediction result rm,n(t) and ground-truth
labels. Then, the AP computes the loss function gradient
of the output layer ∇Lm,n

(
ws

m,n(t)
)

and that of the cut
layer ∇Lm,n

(
wu

m,n(t)
)
, where Lm,n (·) represents the local

loss function of user n in group m. The former is used to
update the server-side model in the AP, while the latter is
transmitted to the user for subsequent updating of the user-
side model. The model update procedure finalizes the BP for
both server-side and user-side model training, which can be
executed using methods such as stochastic gradient descent,

as delineated below:

ws
m,n(t) = ws

m,n−1(t)− ηs∇Lm,n

(
ws

m,n−1(t)
)
, (5)

and

wu
m,n(t) = wu

m,n−1(t)− ηu∇Lm,n

(
wu

m,n−1(t)
)
, (6)

where ηs and ηu are the learning rates for the server-side
model and user-side model update, respectively.

2.3) Model Sharing: The model sharing stage involves
transferring the user-side model from the current user to the
next one within the group to continue the training process,
which is given by

wu
m,n+1(t)← wu

m,n(t), ∀n ∈ Nm \ {Nm}, m ∈M. (7)

The users sequentially perform the training process until
the last user. Finally, the last user sends the latest user-side
model to the AP.

3) Model Aggregation: Model aggregation is performed
at the AP, where the well-trained user-side and server-side
models are aggregated into the whole model. The model
aggregation stage occurs at the AP and takes place after
all users within each group have completed training user-
side models and sent them to the AP. This stage involves
both server-side model aggregation and user-side model
aggregation by using the FedAVG algorithm [34], i.e.,

ws
m(t+ 1) =

∑
m∈M

Dm

D
ws

m,Nm
(t), (8)

and

wu
m(t+ 1) =

∑
m∈M

Dm

D
wu

m,Nm
(t), (9)

where Dm =
∑Nm

n=1 Dn,∀m ∈ M. After that, the aggre-
gated server-side model and user-side model are adopted
as the initial model in the next training round. The training
process will continue until a satisfactory level of accuracy is
reached.

5 CONVERGENCE ANALYSIS

In this section, the convergence of the proposed GHSL
scheme is analyzed. For the tractability of converge analysis,
key assumptions are given as follows [31].

Assumption 1 (ℓ-Smoothness): The local loss function Lm,n(·)
of user n in group m is ℓ-smooth with a Lipschitz constant ℓ, i.e.,

Lm,n(w2) ≤ Lm,n(w1) + ⟨∇Lm,n(w1),w2 −w1⟩

+
ℓ

2
∥w2 −w1∥2, ∀w1,w2.

(10)

Assumption 2 (µ-strong convexity): The global loss function
satisies a µ-strong convex condition with µ > 0, i.e.,

L(w2) ≥ L(w1) + ⟨∇L(w1),w2 −w1⟩

+
µ

2
∥w1 −w2∥2, ∀w1,w2.

(11)

Assumption 3 (Bounded gradient norm): The expected squared
norm of the stochastic gradients for each user is bounded, i.e.,

E∥∇Lm,n(w)∥2 ≤ G2, ∀n ∈ Nm, ∀w. (12)



6

where G represents the upper bound of the expected squared norm
of the stochastic gradients.

Assumption 4 (Bounded Divergence): The divergences of the
local loss function and global loss functions are bounded as by

1

N

N∑
n=1

∥∇Lm,n′(wm,n)−∇Lm,n(wm,n)∥2 ≤ ϵ2, ∀n ∈ N .

(13)
where ϵ is also employed to quantify the degree of non-IID
data [35].

Lemma 1: During t-th training round, once the training of the
n-th user in the m-th group is completed, the expected difference
between their model parameter wm,n(t) and the global parameter
w̄m,n(t) satisfies the following inequality

E
(
∥w̄m,n(t)−wm,n(t)∥2

)
≤ η2n2ϵ2, (14)

where η represents the learning rate and w̄m,n(t) = [ws
m,wu

m].

Proof: The proof of this Lemma 1 is provided in the Ap-
pendix.

Lemma 2: The difference between the average parameter of user
n and user n− 1 can be expressed as

E
(
∥w̄m,n(t)− w̄m,n−1(t)∥2

)
= η2E

∥∥∥∥∥
M∑

m=1

Dm

D
∇Lm,n(wm,n−1(t))

∥∥∥∥∥
2
 .

(15)

Proof: The proof of this Lemma 2 is provided in the Ap-
pendix.

Lemma 3: The inner product between ∇L(w̄m,n−1(t)) and
w̄m,n(t)− w̄m,n−1(t) is bounded as

E (⟨∇L(w̄m,n−1(t)), w̄m,n(t)− w̄m,n−1(t)⟩)

≤ ℓ2η2(n− 1)2ϵ2 − η

2
E

∥∥∥∥∥
M∑

m=1

Dm

D
∇Lm,n(wm,n−1(t))

∥∥∥∥∥
2


− η

2
E
(
∥∇L(w̄m,n−1(t))∥2

)
.

(16)

Proof: The proof of this Lemma 3 is provided in the Ap-
pendix.

Lemma 4: Let w⋆ denote the optimal parameter. For any param-
eter vector w, there exists a constant µ > 0 such that the squared
gradient of the loss function is at least twice the discrepancy
between the loss and the optimal loss, i.e.,

∥∇L(w)∥2 ≥ 2µ(L(w)− L(w∗)). (17)

Proof: The proof of this Lemma 4 is provided in the Ap-
pendix.

Theorem 1: The convergence bound for the proposed GHSL
scheme after T training rounds is as follows.

E[L(w(T ))− L(w⋆)] ≤ (1− ηµ)NTE[L(w(0))− L(w⋆)]

+
T∑

t=1

(1− ηµ)Nt
N∑

n=1

(1− ηµ)n
(
ℓ2η2(N − n)2ϵ2

+(η2ℓ− η)MG2/2
)
,

(18)

where E (L(w(T ))) denotes the expected loss of the trained model
after T iterations, and L(w∗) represents the optimal loss.

Proof: Given Assumption 1, the following inequality holds.

E[L(w̄m,n(t))] ≤ E[⟨∇L(w̄m,n−1(t)), w̄m,n(t)− w̄m,n−1(t)⟩

+ L(w̄m,n−1(t)) +
ℓ

2
∥w̄m,n(t)− w̄m,n−1(t)∥2].

(19)
By applying Lemma 2 and Lemma 3, (19) can be deduced

as

E[L(w̄m,n(t))] ≤ E
(
L(w̄m,n−1(t)) + 4η2G2ℓ2(n− 1)2

− η

2
∥∇L(w̄m,n−1(t))∥2 −

η

2

∥∥∥∥∥
M∑

m=1

Dm

D
∇Lm,n(wm,n−1(t))

∥∥∥∥∥
2

+
ℓ

2
η2

∥∥∥∥∥
M∑

m=1

Dm

D
∇Lm,n(wm,n−1(t))

∥∥∥∥∥
2


≤ E
(
L(w̄m,n−1(t))−

η

2
∥∇L(w̄m,n−1(t))∥2

)
+

η2ℓ− η

2
E

∥∥∥∥∥
M∑

m=1

Dm

D
∇Lm,n(wm,n−1(t))

∥∥∥∥∥
2


+ ℓ2η2(n− 1)2ϵ2

(a)

≤ E (L(w̄m,n−1(t))− ηµ(L(w̄m,n−1(t))− L(w⋆)))

+
η2ℓ− η

2
E

∥∥∥∥∥
M∑

m=1

Dm

D
∇Lm,n(wm,n−1(t))

∥∥∥∥∥
2


+ ℓ2η2(n− 1)2ϵ2.
(20)

where (a) is based on Lemma 4. Particularly, when η2ℓ−η
2 >

0 and η > 1/ℓ, E (L(w̄n
t )− L(w⋆)) adheres to the subse-

quent relation:

E (L(w̄m,n(t))− L(w⋆))

≤ E ((1− ηµ)(L(w̄m,n−1(t))− L(w⋆))) + ℓ2η2(n− 1)2ϵ2

+
η2ℓ− η

2
E

∥∥∥∥∥
M∑

m=1

Dm

D
∇Lm,n(wm,n−1(t))

∥∥∥∥∥
2


≤ E[(1− ηµ)(L(w̄m,n−1(t))− L(w⋆))] + ℓ2η2(n− 1)2ϵ2

+
η2ℓ− η

2
MG2.

(21)
Utilizing a recursive approach, we deduce the disparity
between the model parameters obtained upon training N
users within each group during round t and the optimal
parameters as follows:

E
(
L(W̄(t))− L(w⋆)

)
≤ (1− ηµ)NE ((L(w̄m,1(t))− L(w⋆)))

+
N∑

n=1

(1− ηµ)n
(
ℓ2η2(N − n)2ϵ2 +

η2ℓ− η

2
MG2

)
≤ (1− ηµ)NE ((L(W(t− 1))− L(w⋆)))

+
N∑

n=1

(1− ηµ)n
(
ℓ2η2(N − n)2ϵ2 +

η2ℓ− η

2
MG2

)
.

(22)



7

Upon completing T rounds, we have

E (L(W(T ))− L(w⋆))

≤ (1− ηµ)NTE (L(W(0))− L(w⋆))

+
T∑

t=1

(1− ηµ)Nt
N∑

n=1

(1− ηµ)n
(
ℓ2η2(N − n)2ϵ2

+(η2ℓ− η)MG2/2
)

(23)

Hence, Theorem 1 is proved.

Remark 1: According to Theorem 1, we can conclude that
the increase in training rounds leads to the convergence of
the proposed GHSL scheme. Additionally, the convergence
performance is influenced by user grouping and user data
heterogeneity. Specifically, a larger number of groups and
a high level of non-IID data result in a large value on the
right side term in (18). This enlarges the gap between the
global loss and the expected optimal loss, leading to a slow
convergence rate.

Remark 2: The number of groups causes a trade-off
between the number of training rounds and the per-round
training delay. With a fixed number of users, increasing the
number of groups reduces per-round training delay, which
is contrary to its effect on the number of training rounds due
to model aggregation. Additionally, with hierarchical user
resources, different grouping strategies impact the delay of
a single training round due to the straggler effect, where the
delay of each training round is equal to the longest delay
within a group. Therefore, group decisions are necessary.

6 TRAINING DELAY ANALYSIS AND PROBLEM
FORMULATION

This section introduces the decision variables, analyzes the
per-round training delay in the GHSL scheme, and proposes
a problem focused on minimizing the overall training delay.
In the training process of GHSL, the following decision
variables should be determined.

• Group Number Decision: The number of groups M
remains constant throughout the training process. It is de-
termined at the beginning of the training and based on
historical training data. Subsequently, M is treated as a
variable subject to the constraint

1 ≤M ≤ N, M ∈ Z+ (24)

where N represents the total number of users. This con-
straint ensures that the number of groups does not surpass
the number of users. When M = 1, the GHSL scheme
defaults to the conventional SL scheme, characterized by
a single server-side model where all users participate in
sequential training within the same group.

• User Grouping Decision: In each training round, user
grouping is determined based on channel conditions and
computing capabilities. The decision is a binary matrix,
denoted as A ∈ RN×M , where each element an,m adheres
to the constraint:

an,m ∈ {0, 1}, ∀n ∈ N ,m ∈M, (25)

and ∑
m∈M

an,m = 1, ∀n ∈ N . (26)

where an,m = 1 indicates that device n is associated to
group m; an,m = 0, otherwise.

6.1 Training Delay Analysis

The delay of each training round is determined by the FP,
BP, and the communication process between the user and
the server. The specific details are as follows.

1) Forward Propagation Delay: The delay induced by FP
training comprises two main components: the delay origi-
nating from the user-side model’s FP and the delay from
the server-side model’s FP. Let αF

m, n represent the user-
side model’s FP computation workload in floating point
operations (FLOPs) based on the cut layer and βm,n denote
the batch size of user n in group m. The FP training delay
for each user per round can be expressed as

TF
m,n =

βm,nα
F
m,n

fm,nζ
, ∀n ∈ Nm, m ∈M. (27)

where ζ denotes the number of FLOPs per cycle for each
user, and fm, n represents the local computing speed mea-
sured in cycles per second for each user’s FP phase. Similar
to the user’s FP phase, αF

s,m represents the server-side
model’s FP computation workload, which varies depending
on the layer from the cut layer to the output layer. Without
loss of generality, we assume that the AP evenly allocates
the computing frequency to the server-side model. The
average computing frequency of the server allocated to user
n is given by fs,m = βmαF

s,m/TF
s,mζs, ∀m ∈ M, where ζs

denotes the number of FLOPs cycles for the server and fs,m
is the central processing unit capability of the server-side
model m. The number of the server-side model is equal to
the number of groups. Consequently, we can determine the
time cost of server FP training as follows:

TF
s,m =

βm,nα
F
s,m

ζsfs,m
, ∀n ∈ Nm, m ∈M. (28)

2) Backward Propagation Delay: Similarly, the training
delay associated with the BP process comprises two com-
ponents: the delay incurred by the server-side models and
the delay experienced by the user-side models. We represent
the workloads in the server-side and user-side model BP
processes as αB

m,n and αB
s,m, respectively. Consequently, the

BP delay on the server can be articulated as follows:

TB
s,m =

βm,nα
B
s,m

ζsfs,m
, ∀n ∈ Nm, m ∈M. (29)

The BP delay in each user can be represented as:

TB
m,n =

βm,nα
B
m,n

fm,nζ
, ∀n ∈ Nm, m ∈M. (30)

3) Communication Latency: The communication delay of
the proposed scheme arises from three interdependent pro-
cesses: (i) The AP broadcasts the partitioned user-side model
to the first user in each group via downlink transmission.
(ii) During training, each user transmits smashed data to
the AP for forward propagation and subsequently receives
gradients at the cut layer through backward propagation.
(iii) Upon completing local training, each user sequentially
forwards its updated user-side model parameters to the next



8

user within the group. After all intra-group users complete
their training cycles, the final user uploads the latest model
to the AP for global aggregation.

Phase (i): Initial Downlink Model Distribution. At the
beginning of each training round, the AP broadcasts the
user-side model to the first user within each group. Let
Ωu,m, ∀m ∈ M represent the data size in bits of the user-
side model, where the size depends on the cut layer. We
define the downlink signal-to-noise ratio (SNR) as γs. Con-
sequently, the transmission rate from the AP to the user can
be represented as Rs = B log2 (1 + γs) , and the AP-user
link transmission delay can be estimated by TC

s = Ωu,m/Rs.
Phase (ii): Forward-Backward Propagation Exchange.

During the collaborative training process with the AP, each
user transmits the smashed data generated by the user-
side model to the AP. Subsequently, the AP returns the
gradients of the cut layer post-training. Let Ωs and Ωg

represent the data sizes of the smashed data and the gra-
dients, respectively. The response latency are represented as
T s
m,n = Ωs/Rm,n and T g

m,n = Ωg/Rm,n.
Phase (iii): Updated User-Side Model Deliver. Upon

completing the training, each user delivers the updated
user-side model to the subsequent user, with the transmis-
sion rate for each user denoted by

Rm,n = Bm,n log2 (1 + γm,n) , ∀n ∈ Nm, m ∈M. (31)

where Bm,n denotes the bandwidth resources allocated to
each group, with the sum of allocations for all groups,∑

m∈M Bm,n = B. It should be noted that the scenario
employs time division duplexing, thereby allowing the as-
sumption of identical AP-to-user and user-to-user channel
conditions due to channel reciprocity. Accordingly, the la-
tency for user-to-user transmission of the user-side model is
denoted as TC

m,n = Ωm,n/Rm,n. where Ωm,n represent the
well-trained user-side model for user n ∈ Nm.

4) Overall Training Delay: In each training round, the AP
distributes the initial user-side model to the first user in
each group. Subsequently, within each group, every user
sequentially interacts with the AP to complete both the
forward and backward propagation processes, which entails
the transmission of smashed data and the gradients of the
cut layer. Furthermore, the well-trained user-side model is
passed on to the next user. It is important to note that the
final user in each group is responsible for transferring the
last user-side model back to the AP for model aggregation.
Hence, we derive that the total training delay for m group
is represented by

Tm(A,M) =
Nm∑
n=1

(
TF
m,n + TF

s,m + TF
m,n + TB

s,m + T s
m,n

+T g
m,n + TC

m,n

)
+ TC

s , ∀m ∈M.

(32)
The delay in each training round can be represented as

T (A,M) = max
m∈M

Tm(A,M). (33)

The overall training delay is influenced not only by the
delay of each training round but also by the total number
of training rounds. We define the total training delay as
D(A,M) = T (A,M)R(A,M), where R(·) represents the
function for the total number of training rounds.

6.2 Problem Formulation

To jointly design the edge network and the GSFL scheme,
we propose an optimization problem that aims to minimize
the total training delay by identifying the optimal group
number decision and user grouping decision, which can be
expressed as

P : min
A,M

D (A,M)

s.t. (24), (25), and (26),
(34)

where M is the number of groups in the GHSL scheme,
and N is the total number of users. Constraint (24) ensures
that the number of groups remains within a feasible range,
preventing M from exceeding the total number of users.
Constraint (25) defines A as a binary matrix where each
user is assigned to a single group. Additionally, constraint
(26) guarantees that each user is exclusively associated with
only one group.

This problem is a binary optimization problem that
requires a hierarchical decision process, where the number
of groups is determined first, followed by the optimization
of the user grouping strategy. Solving this problem presents
two major challenges. The first challenge arises from the
black-box nature of the objective function. The relationship
between AI model accuracy and system parameters lacks
a closed-form expression, making it infeasible to apply
traditional gradient-based optimization methods. Without
an explicit mathematical form, direct optimization is im-
practical, and the relationship between training parameters
and model accuracy needs to be explored through patterns
observed in empirical training data. The second challenge
arises from the 0-1 binary nature of the optimization prob-
lem. The objective function is unknown and may be non-
convex, making it difficult to find an optimal solution.
Additionally, group capacity constraints limit the number
of users per group, further increasing the complexity of the
binary optimization process.

7 TWO-STAGE USER GROUPING ALGORITHM

In this section, we propose a two-stage user grouping algo-
rithm, using a Gaussian process regression (GPR)-based al-
gorithm to determine the number of groups and a coalition
game-based algorithm to identify the optimal user grouping
decision.

7.1 First Stage: GPR-Based Group Optimization Algo-
rithm

In this paper, we utilize the observational dataset obtained
from GHSL and GPR to train a predictive model for the
function of training rounds. GPR is a probabilistic regression
technique predicated on the assumption that data points
conform to a multivariate Gaussian distribution. It utilizes
the posterior function to predict the outputs of unknown
data points, as shown in Alg. 2. We also propose a GPR-
based grouping algorithm, as shown in Alg. 3, to identify
the optimal number of user groups. This is achieved by es-
timating the number of training rounds and calculating the
delay per round, with the aim of determining the number
of groups that minimize overall training delay.



9

1) Collect Dataset: In the prediction model, we first define
the input and output variables. The input variables are the
number of users N and the number of group partitions M ,
which are both integers and have specific constraints. The
output variable is the number of training rounds R, which
can be obtained from the GHSL scheme. Therefore, our goal
is to establish a mapping relationship f : (N,M) 7→ H ,
which is learned and predicted through the training round
prediction model. To establish the prediction model, we con-
sider an observation dataset D = {(Ni,Mi, Ri)}Ii=1, where
I is the total number of data points. Each data point consists
of an input pair (Ni,Mi) = zi and the corresponding output
Ri. Based on these observations, we can construct a GPR
model to estimate the function H(zi) = f(zi)+ ϵ, where ϵ is
the noise term added to the observations, usually assumed
to be Gaussian noise. When collecting observational data,
the system lacks information on resource heterogeneity.
Therefore, we assume the users are homogeneous, and each
group has identical users.

The GPR-based user grouping algorithm primarily en-
compasses the following stages:

2) Define Prior Function: we assume that the function
H(zi) is a Gaussian process, which means that for any set of
inputs zi, the output of the function H(zi) follows a Gaus-
sian distribution. The H(zi) is a prior function capturing the
data distribution before observing any actual data, which
can be defined as

H(zi) ∼ GP(m(zi), k(zi, zj)). (35)

where GP denotes a Gaussian process, m(zi) is the mean
function typically assumed to be zero, and k(zi, zj) is the
covariance function.

3) Compute Covariance Matrix: The kernel function deter-
mines the similarity between any two points in the input
space. The covariance matrix K is calculated by

K =

k(z1, z1) · · · k(z1, zt)
...

. . .
...

k(zt, z1) · · · k(zt, zt)

 . (36)

In the proposed algorithm, the kernel function is defined as
a radial basis function (RBF), also known as the Gaussian
kernel, which can be given by

k(zi,zj) = σ2 exp

(
− 1

2l2
(
(Ni −Nj)

2 + (Mi −Mj)
2
))

,

(37)
where the kernel function parameters σ2 and l, denoting
output variance and length scale, respectively, are encap-
sulated in the parameter set θ. This relationship can be
expressed as θ = {σ2, l}. These parameters need to be
estimated from the observation dataset to optimize the
kernel function. In prediction model training, our goal is
to learn the parameters of the kernel function and to make
predictions for unknown points z⋆ based on the observed
training data. Training the GPR model aims to maximize the
log-likelihood function, which is usually achieved through
iterative optimization algorithms, such as gradient ascent.

4) Optimize Kernel Function: With the prior and kernel
defined, the next step in GPR training involves optimizing
the kernel parameters. This optimization is achieved by
maximizing the log-likelihood function with the observed

Algorithm 2 Gaussian Process Regression Algorithm.

1: Input: Training dataset D = {(Ni,Mi, Ti)}Ii=1, the ker-
nel function, learning rate ϕ;

2: Output: Predictive model H(N,M);
3: Initialize: Define a Gaussian process GP and initialize

kernel function parameters θ;
4: Construct covariance matrix K for the training input

based on the kernel function ;
5: Calculate the log-likelihood function in (38) with the

observed data under the GP prior;
6: Calculate the gradient of L with respect to the kernel

function parameters θ;
7: Update kernel function parameters θ iteratively using

gradient descent until convergence:

θ′ = θ + α∇θL;

8: Calculate the posterior distribution for new input point
z⋆ based on (41) and (42);

9: Output the posterior mean µ⋆ and variance (σ∗)2 of the
predictive function H(N,M);

data and the prior function. The log-likelihood function
serves as an indicator of the model’s efficacy, with a given
set of kernel parameters, in explaining the observed training
data. It is formulated as

L = −1

2
log

(
|K+ σ2

nI|
)
− 1

2
yT (K+ σ2

nI)
−1y − I

2
log 2π,

(38)
where y represents the target values of the training data, σ2

n

is the variance of the noise term, and I is the identity matrix.
Maximizing this function allows us to fine-tune the kernel
parameters to best fit the training data.

To maximize the likelihood function, the proposed algo-
rithm employs a method, such as gradient ascent, to identify
the optimal kernel parameters. In each iteration, the update
of parameters can be achieved by calculating the gradient
of the likelihood function with respect to the parameters.
In the gradient ascent algorithm, the parameter update rule
can be represented as

θ′ = θ + ϕ∇θL, (39)

Where θ represents the parameters of the kernel function, ϕ
is the learning rate, and∇θL is the gradient of the likelihood
function with respect to the parameter θ.

5) Calculate Posterior Function: Upon determining the
optimal parameters, the next step involves computing the
posterior function. This function characterizes the condi-
tional distribution of the output R⋆ for new inputs z⋆, con-
tingent upon the training dataset D. The posterior function
is formulated as

P (H(z⋆)|D) ∼ N (µ⋆, (σ∗)2). (40)

The mean µ⋆ and variance (σ∗)2 of the posterior distribution
are computed using the optimized kernel parameters, the
training data inputs Z = {(Ni,Mi)}Ii=1, and outputs y =
{Ri}Ii=1. The mean of the posterior function is defined as

µ⋆ = k(z⋆,Z)T
(
K+ σ2

nI
)−1

y. (41)



10

Algorithm 3 Optimal Group Number Determination Algo-
rithm.

1: Input: User count N and group decision A⋆ ;
2: Output: Optimal group number M⋆;
3: Initialize: Initialize an empty list Ttotal to store total

training delay for different group numbers;
4: for m = 1, . . . , N do
5: Determine the number of training rounds H(m,N)

for user count N and group number m using Algo-
rithm 2’s predictive function;

6: Calculate per-round computation delay T (A⋆, N) for
user count N and group number m using (33);

7: Compute total training delay T (A⋆,M)×H(m,N);
8: Append T (A⋆,M)×H(m,N) to Ttotal;
9: end for

10: Find the minimum value in Ttotal and its corresponding
group number M⋆.

The posterior variance (σ∗)2, which quantifies the uncer-
tainty in the predictions at new input points, can be ex-
pressed as

(σ∗)2 = k(z⋆, z⋆)− k(z⋆,Z)T
(
K+ σ2

nI
)−1

k(z⋆,Z). (42)

Computational Complexity Analysis: The computa-
tional complexity of the Alg. 2 is critically analyzed, focus-
ing on its two most computationally intensive operations:
the construction of the covariance matrix and its inversion.
The construction of the covariance matrix, K, is executed
by evaluating a kernel function across all pairs of training
points, yielding a complexity of O(I2), where I represents
the total number of training data points [36]. The pre-
dominant computational demand arises during the matrix
inversion step and is integral to both the log-likelihood
computation and parameter updating process. This opera-
tion exhibits a computational complexity of O(I3), utilizing
standard numerical techniques such as lower-upper decom-
position. Given the algorithm iterates over G iterations,
the overall training phase complexity scales as O(GI3).
During the prediction phase, calculating the posterior mean
and variance for a new input involves operations with
the pre-computed inverse covariance matrix, maintaining a
complexity of O(I2).

Based on Alg. 2, the predicted number of training rounds
can be deduced given the number of users and groups.
Furthermore, the training delay for each round is calculable
via (33). By iterating over all possible scenarios for M , the
optimal group number M⋆ that minimizes the total delay,
as defined in (43), can be identified. The entire procedure is
outlined in Alg. 3.

7.2 Second Stage: Coalition Game-Based User Group-
ing Strategy Algorithm
The user grouping sub-problem aims to determine the opti-
mal user grouping decision, expressed mathematically as

P1 : min
A,M⋆

D (A,M⋆)

s.t. (25) and (26).
(43)

where D (A,M⋆) represents the total training delay under
the optimal number of groups M⋆. The optimization vari-
ables are the binary user grouping decisions, dependent on
users’ computing capabilities and channel conditions, thus
making this sub-problem a binary optimization problem
with group capacity constraints. To effectively tackle this
issue, we develop a user grouping algorithm grounded in
coalition game theory. The most important aspect of the
coalition game setting is the formation of coalitions. Specif-
ically, each user has different preferences over potential
coalitions and adopts the preference relation to compare any
two collections of coalitions. In this regard, we present the
following definition of preference relation.

• Preference Order: For any user n ∈ Nm, the preference
order ⪰n is defined as a complete, transitive, and reflexive
binary relation over the set of all partitions that user n can
possibly form.

In the user grouping algorithm, users can choose to join
or leave a coalition based on their preference order. Specif-
ically, a user will opt to join a coalition that it prefers over
others. For any user n ∈ Nm, considering two partitions Um
and Um′ of the grouping strategy A, Um ⪰n Um′ indicates
that user n prefers being part of coalition Um over Um′ .
This does not account for scenarios where user n holds
equal preference for Um and Um′ . The preference operation
U ⪰n U ′ is defined as

Um ≻n Um′ ⇔ R(Um)+R(Um′ \n) > R((Um \n)+R(Um′).
(44)

This definition implies that user n prefers membership in
coalition Um over Um′ , provided that such a strategy de-
creases the overall training delay. Users will execute strategy
switches based on their preference order in accordance with
the switching rules defined below.

• Switch Operation: Given a partition A =
{U1,U2, . . . ,UM⋆} of the user group strategy, if
a user n ∈ Nm performs a switch from Um
to Um′ where Um ̸= Um′ , the current partition
A is modified to a new partition A′ such that
A′ = (A \ {Um,Um′}) ∪ {Um \ {n},Um′ ∪ {n}}.

The system is initialized with any random coalition
partition A = {U1,U2, . . . ,UM⋆}. For each user n ∈ Nm, it
is assumed that the current coalition is Um, where Um ⊆ A.
We then randomly select another coalition Um′ and assume
the preference Um′ ≻n Um is satisfied, meaning a switch
from Um to Um′ will occur, updating the current coalition
partition to the new partition A′ as defined. The switch
operation is executed only if the preference relation defined
in (44) is met. In this mechanism, every user n ∈ Nm

can leave its current coalition and join another, provided
that the new coalition is strictly preferred according to the
definition in (44). Additionally, the user grouping strategy
must significantly decrease the overall training delay in the
new coalition. Generally, the proposed coalition formation
game aims to find a coalition structure that maximizes total
utility rather than individual player payoffs.

Based on the switch rule defined previously, we develop
a coalition formation algorithm for user grouping, as de-
tailed in Alg.4. In the proposed algorithm, users execute
switch operations until reaching a Nash equilibrium par-
tition. The proposed algorithm is described as follows:



11

Algorithm 4 Coalition Game-Based User Grouping Algo-
rithm.

1: Input: Device computing capabilities, channel condi-
tions, and optimal number of groups M⋆;

2: Output: User grouping decision A⋆;
3: Initialization: Randomly select a feasible coalition par-

tition A0 of the user set Nm, and initialize Â = A0,
k = 0, and P = 0;

4: repeat
5: Increase k = k + 1;
6: Select a user n ∈ Nm by a predetermined permutation

and identify its current coalition Um ∈ Â;
7: Randomly select another coalition Um′ ∈ Â, ensuring

Um′ ̸= Um;
8: if Preference relation Um′ ≻n Um is satisfied then
9: User n leaves its current coalition Um and joins Um′ ;

10: Update Â according to switch rule by
11: Û ← {Û \ {Um′ ,Um}} ∪ {Um \ {n},Um′ ∪ {n}};
12: Reset P = 0;
13: else
14: Increase P = P + 1;
15: end if
16: until Â converges to a Nash equilibrium partition A⋆.

1) The algorithm is activated by selecting a random
coalition partition, which is then designated as the
current partition Û . The iteration counter and the
counter for consecutive unsuccessful switch oper-
ations, denoted by iter and num, respectively, are
both reset to zero.

2) User n is randomly selected based on a predeter-
mined permutation. The user n then selects an alter-
nate coalition Um′ distinct from its current coalition
Um. Following this, it calculates the utilities for both
coalitions, culminating in a decision on whether to
switch.

3) If user n satisfies the preference relation defined in
(44), it notifies the affected coalitions of the switch,
prompting an update to the current coalition parti-
tion.

4) To enhance the convergence rate and minimize
the algorithm’s complexity, the algorithm leverages
the count of consecutive unsuccessful switch op-
erations, num. This count is reset to zero follow-
ing a successful operation. If not, it increments by
one. The proposed algorithm terminates when num
reaches ten times the number of users, at which
point the algorithm converges to the final Nash
equilibrium.

Theorem 2: Regardless of the initial alliance partition A0, Alg. 4
converges to a final partition A⋆, consisting of multiple disjoint
alliances.

Proof : In our proposed algorithm, the number of users
is finite, and the number of groups can be determined
to be fixed through Alg. 3. Thus, the maximum number

of partitions that Alg. 4 can form is M⋆. Based on the
preference relationships in (44), and the switching rules
defined in Definition 4, each user can autonomously decide
its potential coalitions, aiming to improve system utility by
selecting a new partition. Moreover, for a given set of users
Nm, the number of partitions is a Bell number. As each
switching operation creates a new partition, and the number
of partitions is finite, Alg. 4 ensures convergence to the final
Nash equilibrium A⋆.

Computational Complexity Analysis: The complexity
of Alg. 4 primarily depends on the frequency of coalition
switching operations. In each iteration, randomly selected
user equipment assesses its preferences for its current and
potential coalitions and computes the total benefits these
coalitions offer, which is the total training delay under the
GHSL scheme. If users prefer the potential coalition, they
will switch from their current one to the new one. Each
iteration involves the selection of only one user, preventing
multiple operations. If K denotes the number of iterations,
then the computational complexity of Alg. 4 is O(K).

8 PERFORMANCE EVALUATION

8.1 Simulation Setting
In this simulation, we utilize three datasets for image clas-
sification [37]: GTSRB, with over 50,000 images in 43 traffic
sign categories; F-MNIST, a collection of 70,000 grayscale
images across 10 fashion-related classes; and CIFAR-10,
comprising 60,000 color images in 10 varied categories in-
cluding animals and vehicles. For non-IID settings, we im-
plement the Dirichlet distribution for data allocation to fol-
low the non-IId characteristics of data, reflecting the diver-
sity of data collected by various devices. Specifically, we em-
ployed the method described in [38], [39] to synthesize data
for non-identical clients. Each client draws data from each
category, denoted by qi, where the vector q = (q1, q2, ..., qi)
follows a Dirichlet distribution, i.e., q ∼ Dir(Ω1p). Here, p
represents the categories of the data, and Ω1 is a parameter
controlling the uniformity across clients. This parameter
ranges from 0, where each client randomly holds only one
category, to infinity, approximating an i.i.d. scenario where
all clients can access all categories. For principal simulation
parameters, refer to Table 2.

Our simulation evaluation includes three models: a 27-
layer convolutional neural network (CNN) comprising 7
fully connected layers and 20 convolutional layers. The
seventh convolutional layer is designated as the cut layer.
The user-side model, including these 7 convolutional lay-
ers, occupies 0.074 MB and requires 19.92 MFlops for FP
and 39.84 MFlops for BP. The server-side model occupies
22.315 MB, with forward and backward propagations re-
quiring 118.23 MFlops and 236.46 MFlops, respectively. Ad-
ditionally, the sizes of the smashed data and the gradients
at the cut layer are 0.064 MB and 0.064 MB, respectively.
The other two models evaluated are ResNet18 and LeNET,
with user-side model sizes of 0.0071 MB and 0.0054 MB, and
server-side sizes of 42.618 MB and 1 MB, respectively. The
CNN model is the default configuration for our simulations
unless specified otherwise.

We compare the proposed scheme with the following
three benchmarks:



12

TABLE 2
SIMULATION PARAMETERS.

Parameter Value
CPU capability of the user, fs 2 GHz
CPU capability of the edge server, fm(n) 100 GHz
Batch size 128
Number of users, N 30
Bandwidth, B 30 MHz
SNR 17 dB
User-side model learning rate, ηu 0.01
Server-side model learning rate, ηs 0.01
Dirichlet coefficient, Ω1 0.5

TABLE 3
AI MODEL PARAMETERS

Architecture # Parameters # Layers Comp. (MFlops)
LeNet [15] 4.3 million 12 91
CNN [15] 5.8 million 27 138
ResNet18 [40] 11.2 million 18 560

1) Centralized Learning (CL): We train all the data
on a complete model, which achieves the highest
accuracy that can be reached by all benchmarks and
the proposed GHSL scheme.

2) SL [16]: Users are trained sequentially. Each user
locally trains the user-side model and interacts with
a server to train the server-side model. The latest
user-side model is then passed to the next user.

3) Split Federated Learning (SFL) [32]: Multiple users
are trained in parallel. Upon the completion of each
training round, all user-side and server-side models
are aggregated.

4) Group-based Parallel Split Learning (CPSL) [15]:
In the CPSL scheme, users are organized into mul-
tiple groups. Within each group, users simultane-
ously train several user-side models and update a
shared server-side model. Across groups, the train-
ing is sequential.

8.2 Simulation Results

8.2.1 Training Performance of the GHSL Scheme
1) Accuracy Performance: Fig. 3a and Fig. 3b show the ac-
curacy performance of the global model with the number of
training rounds in both IID and non-IID settings. The results
indicate that the accuracy performance of the GHSL scheme
is comparable to that of SL and centralized learning (CL),
mainly due to the sequential training by the users within
the group. However, GHSL requires more training rounds
to achieve the same accuracy, which is due to the model
aggregation process. Furthermore, it is observed a decrease
in the accuracy of the CPSL scheme, which might be due to
information loss caused by concatenating compressed data
into a matrix.

2) Delay Performance: The total training delay is the prod-
uct of the number of training rounds and per-round training
delay. Fig. 4a and Fig. 4b display the assessment of total
training delay for various schemes. Under both IID and non-
IID settings, the proposed GHSL scheme consistently out-
performs the baseline in accelerating model training delay.
Specifically, the training delay for the GHSL, SFL, CPSL, and

0 25 50 75 100 125 150 175 200
Training Round

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

CL
GHSL
CPSL

SFL
SL

160 180 20093
94
95
96
97

(a) IID

0 25 50 75 100 125 150 175 200
Training Round

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

CL
GHSL
CPSL

SFL
SL

160 180 20092

94

96

(b) Non-IID

Fig. 3: Accuracy performance of CNN on the GTSRB dataset
varies with each training round.

0 500 1000 1500 2000 2500 3000 3500 4000
Training Delay (seconds)

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

GHSL
CPSL

SFL
SL

1000 1500 200085

90

95

(a) IID

0 500 1000 1500 2000 2500 3000 3500 4000
Training Delay (seconds)

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

GHSL
CPSL

SFL
SL

1500 200080

85

90

95

(b) Non-IID

Fig. 4: Accuracy performance of CNN on the GTSRB dataset
varies with each training delay.

SL schemes are about 1,782 seconds, 2,110 seconds, 2,502
seconds, and 3,402 seconds under non-IID data, respectively.
This variation is attributed to the difficulty CPSL faces in
converging with larger batch sizes, while SFL is influenced
by an increase in the number of training rounds due to the
aggregation of multiple server-side models. Additionally,
the per-round training delay for GHSL, CPSL, SFL, and
SL are 29.7 seconds, 20.1 seconds, 27.8 seconds, and 75.6
seconds, respectively. Table 4 presents the performance of
the proposed GHSL scheme across various datasets and
models. Simulation results indicate that the GHSL scheme
achieves the required accuracy more rapidly than other
benchmarks on the MNIST dataset with the LeNet model,
a finding also replicated in simulations using the CIFAR-
10 dataset with the ResNet model. The results confirm
the robustness of the proposed scheme. Particularly, when
compared with CPSL and SFL, GHSL can reduce up to 3.4
times the delay consumption to reach the required accuracy
of 96% on the MNIST dataset under a non-IID setting.
When compared with SFL, GHSL can reduce up to 2.9 times
delay consumption to reach the required accuracy of 80%
on CIFAR-10 under the non-IID setting.

3) System Overhead: Table 4 illustrates that the GHSL
training incurs lower system overhead, including reduced
total communication costs and user computing require-
ments. GHSL benefits from excellent convergence due to its
sequential training within groups, resulting in minimal sys-
tem cost compared to other hybrid benchmarks. However,
compared to the vanilla SL scheme, GHSL incurs higher
communication costs and computational workloads due to



13

TABLE 4
PERFORMANCE COMPARISON OF THE PROPOSED SCHEME AND BENCHMARKS

IID non-IID

Dataset Scheme #Round Delay
(seconds)

Comp.
(GFlops)

Comm.
(GB) #Round Delay

(seconds)
Comp.

(GFlops)
Comm.

(GB)
SL 21 850.5 (2.5×) 1.06 1.44 26 1053.0 (2.8×) 1.31 1.79

MNIST SFL 96 895.4 (2.6×) 4.84 6.70 138 1287.1 (3.4×) 6.96 9.63
with LeNet CPSL 44 647.3 (1.9×) 2.22 3.07 58 853.2 (2.2×) 2.92 4.05

GHSL 25 340.7 (1.0×) 1.26 1.72 28 381.6 (1.0×) 1.41 1.93
SL 93 2.78 ×104(2.7×) 654.95 90.11 128 3.83 ×104(3.2×) 901.44 124.03

CIFAR-10 SFL 403 3.25 ×104(3.1×) 2838.13 393.87 562 4.53 ×104(3.7×) 3957.89 549.27
with ResNet18 CPSL 174 2.06 ×104(2.0×) 1225.40 170.06 196 2.32 ×104(1.9×) 1380.33 191.56

GHSL 109 1.03 ×104(1.0×) 767.63 105.77 128 1.21 ×104(1.0×) 901.43 124.20

0.5 5 10
Dirichlet Parameter

0

500

1000

1500

2000

2500

3000

3500

4000

De
la

y 
(s

ec
on

ds
)

GHSL
SFL

CPSL
SL

Fig. 5: The impact of the non-IID level.

0 2000 4000 6000 8000 10000
Training Delay (seconds)

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

GHSL
CPSL

SFL
SL

2000 400080

85

90

95

Fig. 6: Train delay performance for a large number of users
(N = 100).

increased training rounds prompted by model aggregation,
though these costs remain within acceptable limits.

4) Impact of Data Distribution: We explore the training
performance under non-IID settings. As shown in Fig. 5,
simulation results demonstrate that the proposed GHSL
scheme consistently achieves the minimum training delay
across varying degrees of non-IID data distribution, thereby
proving the scheme’s robustness. Moreover, compared to
the CPSL scheme, our scheme exhibits significantly greater
performance gains under highly non-IID. For instance, as
the Dirichlet coefficient decreases from 10 to 0.5, the gain in-
creases by 30%. This is because the proposed scheme avoids
concatenating smashed data. When the data distribution
varies significantly, large input sizes can degrade training

5 10 15 20 25 30 35 40
Bandwidth (MHz)

1000

2000

3000

4000

5000

6000

7000

8000

De
la

y 
(s

ec
on

ds
)

GHSL Delay
CPSL Delay
SFL Delay
SL Delay

(a) Bandwidth resource

20 40 60 80 100
Server computing power (GHz)

1000

2000

3000

4000

5000

6000

7000

8000

De
la

y 
(s

ec
on

ds
)

GHSL Delay
CPSL Delay
SFL Delay
SL Delay

(b) Computing resource

Fig. 7: Training delay performance under different amount
of bandwidth and computing resource.

performance.
5) Impact of User Number: We further analyze training

performance under scenarios involving a large number of
users in Fig. 6. Specifically, we evaluate the performance
of three hybrid schemes with 100 users. The simulation
results indicate that the proposed GHSL scheme maintains
the lowest training delay. Additionally, GHSL exhibits a
significant delay performance improvement over SFL as the
number of users increases, achieving approximately a 70%
reduction. This improvement is attributed to the increasing
number of server-side models associated with a larger user
base, which typically complicates model convergence in
SFL. Our proposed scheme, along with the CPSL scheme,
features a grouped, parallel design that effectively addresses
the challenges posed by large-scale user environments.

6) Impact of Network Resource: We assess the impact of
resource heterogeneity on training performance, as depicted
in Fig. 7a and Fig. 7b, which respectively show training de-
lay variations with changes in system bandwidth and server
computing resources. Although these system resources do
not directly affect the training process, they influence com-
munication and computation delay, necessitating theoretical
calculations of latency for each round. In the results, the
proposed GHSL scheme demonstrates superior capability
in adapting to changes in system resources, consistently
maintaining the shortest training delay. Furthermore, the
benefits of the GHSL scheme increase under resource con-
straints: delay decreased by an average of 30% with a system
bandwidth of 40 MHz and by 34% with a bandwidth of 5
MHz, compared to SFL. Similar outcomes were observed
with variations in server computing power. As Table 4
shows, reaching specified test accuracy requires increased



14

10 1 100 101 102

Length Scale

0.1

0.2

0.3

0.4

0.5
M

ea
n 

Er
ro

r
(0.001, 0.1)
(0.001, 1)
(0.001, 10)

(a) Variation of mean error with
kernel parameters

10
20

30
40N 0

10
20

30
40

M

50

100

150

H(
N,

M
)

25

50

75

100

125

150

(b) Validation of training round
estimation

(c) Per-round training delay with
different grouping algorithms

1000 1250 1500 1750 2000 2250 2500
Training Delay (s)

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y 
(%

)

Proposed Algorithm
Heuristic User Grouping
Random User Grouping

(d) Overall training delay taking
the proposed grouping algorithm

Fig. 8: Performance of the proposed GPR-based group optimization algorithm and coalition game-based user grouping
strategy algorithm.

communication overhead and computation Flops, leading
to greater training delay when system resources are limited.
Compared to SFL and CPSL, SL performs better when
available resources are limited because each user exclusively
utilizes channel bandwidth and server computing resources
in the SL scheme.

8.2.2 Performance of User Grouping Algorithm
1) Prediction Performance of GPR: In Fig. 8b, we conducted
simulations to validate the proposed estimation methods for
the function of training rounds. We collect 25 datasets from
the GHSL scheme to fit the training rounds function. The
result illustrates that the red dots represent actual training
round values for given numbers of users and groups, with
a fitted surface passing through these points. Given optimal
kernel parameters, the comparison between predicted and
actual values shows that the estimation error rate is less
than 5%.

Kernel parameter settings influence predictions made
via Gaussian process regression, prompting us to assess
the impact of various kernel settings on mean error values.
Specifically, Gaussian process regression aims to maximize
the likelihood function to identify optimal kernel parame-
ters. Therefore, the boundaries of these parameters affect the
fitting outcomes. We explored how mean error varies with
changes in the RBF kernel by setting different boundary
ranges for the constant kernel. In Fig. 8a, the results indicate
that defining constant kernel (σ) within the range of 0.001
to 10 significantly reduces prediction errors, and the mean
error rate is below 5% when the RBF parameter is 10.

2) Delay Performance of the Grouping Algorithm: A com-
parison of the proposed coalition game-based grouping
algorithm with two other benchmarks is presented in Fig.
8c. The first benchmark is a heuristic user grouping algo-
rithm, where users are grouped based on their computing
capabilities, grouping those with similar capacities together.
The second benchmark is that users are randomly divided.
In the simulations, the computing capabilities of users and
the SNR of received signals are set to follow a normal
distribution, with mean values of 2 GHz and 15 dB, and
standard deviations of 0.5 GHz and 5 dB respectively. The
simulation results demonstrate that the proposed grouping
algorithm significantly reduces the training delay per round
compared to the benchmarks. Specifically, it reduces delay
by an average of 45% compared to the heuristic algorithm

and 25% compared to the random algorithm. This is because
the proposed user grouping algorithm mitigates the strag-
gler effect between the groups under hierarchical system
resources.

Figure 8d shows the training delay performance of the
proposed scheme and user grouping algorithm. It can be
seen that the training delay with the proposed scheme is
about 1,750 seconds, which is 45% lower than the 2,542
seconds by combining the GHSL scheme with the heuristic
grouping algorithm, and 24% lower than the 2,169 seconds
with the random grouping algorithm. These results indicate
that the combination of the two designs effectively reduces
the overall training delay.

9 CONCLUSION

In this paper, we have proposed a novel GHSL scheme
to expedite SL in edge networks. The proposed scheme
partitions the users into multiple groups and trains users in
each group sequentially while groups are trained parallelly.
This can expedite the training process. In addition, we have
conducted a convergence analysis of the GHSL scheme,
illustrating that the user grouping decision impacts the
convergence rate. Moreover, we have designed a two-stage
algorithm to identify the group number and then make
the optimal user grouping decision, thereby minimizing the
overall training delay. Simulation results have demonstrated
that the proposed scheme outperforms the benchmarks in
terms of training delay. The proposed scheme is suitable
for edge networks with limited spectrum resources and
mobile devices with constrained computing resources due
to low communication overhead and user-side computa-
tional workload. For the future work, we will investigate
the impact of user mobility on the performance of the GHSL
scheme.

ACKNOWLEDGMENT

This work was supported in part by the Peng Cheng
Laboratory Major Key Project under Grants PCL2023AS1-
5 and PCL2024A01, in part by the Natural Science Foun-
dation of China under Grant 62201311, in part by the
Young Elite Scientists Sponsorship Program by CAST un-
der Grant 2023QNRC001, in part by the GuangDong Ba-
sic and Applied Basic Research Foundation under Grant



15

2023B0303000019, and in part by Shenzhen Science and
Technology Program under Grant JCYJ20241202125910015.

REFERENCES

[1] Z. Yang, M. Chen, K. K. Wong, H. V. Poor, and S. Cui, “Federated
learning for 6G: Applications, challenges, and opportunities,”
Engineering, vol. 8, pp. 33–41, 2022.

[2] I. Masi, Y. Wu, T. Hassner, and P. Natarajan, “Deep face recogni-
tion: A survey,” in Proc. IEEE SIBGRAPI, 2018, pp. 471–478.

[3] C. Y. Chandan K. Sahu and R. Rai, “Artificial intelligence (AI)
in augmented reality (AR)-assisted manufacturing applications: A
review,” Int. J. Prod. Res., vol. 59, no. 16, pp. 4903–4959, 2021.

[4] Z. Feng, X. Chen, Q. Wu, W. Wu, X. Zhang, and Q. Huang,
“FedDD: Toward communication-efficient federated learning with
differential parameter dropout,” IEEE Trans. Mobile Comput.,
DOI: 10.1109/TMC.2023.3311188, 2023.

[5] X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, and
J. Rao, “AI-assisted network-slicing based next-generation wire-
less networks,” IEEE Open J. Veh. Technol, vol. 1, pp. 45–66, 2020.

[6] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analytics,”
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 421–434,
2015.

[7] S. Chen, Y. Xu, H. Xu, Z. Jiang, and C. Qiao, “Decentralized
federated learning with intermediate results in mobile edge com-
puting,” IEEE Trans. Mobile Comput., vol. 23, no. 1, pp. 341–358,
2024.

[8] X. Cao, Z. Lyu, G. Zhu, J. Xu, L. Xu, and S. Cui, “An overview
on over-the-air federated edge learning,” IEEE Wirel. Commun.,
vol. 31, no. 3, pp. 202–210, 2024.

[9] X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic
network virtualization and pervasive network intelligence for
6G,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 1–30, 2022.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” Commun. ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[12] K. Pfeiffer, M. Rapp, R. Khalili, and J. Henkel, “Federated learning
for computationally-constrained heterogeneous devices: A sur-
vey,” ACM Comput. Surv., vol. 55, no. 14, pp. 300–360, 2023.

[13] D. Yang, W. Zhang, Q. Ye, C. Zhang, N. Zhang, C. Huang,
H. Zhang, and X. Shen, “Detfed: Dynamic resource scheduling for
deterministic federated learning over time-sensitive networks,”
IEEE Trans. Mobile Comput., vol. 23, no. 5, pp. 5162–5178, 2024.

[14] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning,” in Proc. AAAI,
vol. 36, no. 8, 2022, pp. 8485–8493.

[15] W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, and
W. Shi, “Split learning over wireless networks: Parallel design and
resource management,” IEEE J. Sel. Areas Commun., vol. 41, no. 4,
pp. 1051–1066, 2023.

[16] O. Gupta and R. Raskar, “Distributed learning of deep neural
network over multiple agents,” J. Net. Comp. Appl., vol. 116, pp.
1–8, 2018.

[17] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A.
Camtepe, H. Kim, and S. Nepal, “End-to-end evaluation of fed-
erated learning and split learning for Internet of things,” arXiv
preprint arXiv:2003.13376, 2020.

[18] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, “Detailed
comparison of communication efficiency of split learning and
federated learning,” arXiv preprint arXiv:1909.09145, 2019.

[19] X. Wu, X. Yao, and C.-L. Wang, “FedSCR: Structure-based com-
munication reduction for federated learning,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 7, pp. 1565–1577, 2021.

[20] J. Guo, J. Wu, A. Liu, and N. N. Xiong, “Lightfed: An efficient and
secure federated edge learning system on model splitting,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 11, pp. 2701–2713, 2022.

[21] Y. Koda, J. Park, M. Bennis, K. Yamamoto, T. Nishio, M. Morikura,
and K. Nakashima, “Communication-efficient multimodal split
learning for mmwave received power prediction,” IEEE Commun.
Lett., vol. 24, no. 6, pp. 1284–1288, 2020.

[22] J. Liu, H. Xu, L. Wang, Y. Xu, C. Qian, J. Huang, and
H. Huang, “Adaptive asynchronous federated learning in
resource-constrained edge computing,” IEEE Trans. Mobile Com-
put., vol. 22, no. 2, pp. 674–690, 2023.

[23] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. IEEE ICC, 2020, pp. 1–6.

[24] X. Chen, J. Li, and C. Chakrabarti, “Communication and compu-
tation reduction for split learning using asynchronous training,”
in Proc. IEEE SiPS, 2021, pp. 76–81.

[25] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning
on edge devices,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34,
no. 12, pp. 10 374–10 386, 2023.

[26] N. Bouacida, J. Hou, H. Zang, and X. Liu, “Adaptive federated
dropout: Improving communication efficiency and generalization
for federated learning,” in Proc. IEEE INFOCOM, 2021, pp. 1–9.

[27] N. D. Pham, A. Abuadbba, Y. Gao, K. T. Phan, and N. Chilamkurti,
“Binarizing split learning for data privacy enhancement and com-
putation reduction,” IEEE Trans. Inf. Forensics Secur., vol. 18, no. 1,
pp. 3088–3100, 2023.

[28] E. Samikwa, A. D. Maio, and T. Braun, “DISNET: Distributed
micro-split deep learning in heterogeneous dynamic IoT,” IEEE
Internet Things J., vol. 11, no. 4, pp. 6199–6216, 2024.

[29] W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, X. S. Shen, and
W. Zhuang, “Ai-native network slicing for 6g networks,” IEEE
Wireless Commun., vol. 29, no. 1, pp. 96–103, 2022.

[30] X. Liu, Y. Deng, and T. Mahmoodi, “Wireless distributed learning:
A new hybrid split and federated learning approach,” IEEE Trans.
Wireless Commun., vol. 22, no. 4, pp. 2650–2665, 2023.

[31] B. Yin, Z. Chen, and M. Tao, “Predictive GAN-powered multi-
objective optimization for hybrid federated split learning,” IEEE
Trans. Commun., vol. 71, no. 8, pp. 4544–4560, 2023.

[32] C. Xu, J. Li, Y. Liu, Y. Ling, and M. Wen, “Accelerating split
federated learning over wireless communication networks,” IEEE
Trans. Wireless Commun., DOI: 10.1109/TWC.2023.3327372, 2023.

[33] S. Zhang, H. Tu, Z. Li, S. Liu, S. Li, W. Wu, and X. Shen, “Cluster-
HSFL: A cluster-based hybrid split and federated learning,” in
Proc. IEEE/CIC ICCC, 2023, pp. 1–2.

[34] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. PMLR AISTATS, 2017, pp. 1273–1282.

[35] C. Feng, H. H. Yang, D. Hu, Z. Zhao, T. Q. S. Quek, and G. Min,
“Mobility-aware cluster federated learning in hierarchical wireless
networks,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8441–
8458, 2022.

[36] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[37] M. Hu, W. Yang, Z. Luo, X. Liu, Y. Zhou, X. Chen, and D. Wu,
“AutoFL: A Bayesian game approach for autonomous client par-
ticipation in federated edge learning,” IEEE Trans. Mobile Comput.,
vol. 23, no. 1, pp. 194–208, 2024.

[38] C. Feng, H. H. Yang, D. Hu, Z. Zhao, T. Q. S. Quek, and G. Min,
“Mobility-aware cluster federated learning in hierarchical wireless
networks,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8441–
8458, 2022.

[39] J. Wang, S. Wang, R.-R. Chen, and M. Ji, “Demystifying why local
aggregation helps: Convergence analysis of hierarchical SGD,” in
Proc. AAAI Conf. Artif. Intell., vol. 36, no. 8, 2022, pp. 8548–8556.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE CVPR, 2016, pp. 770–778.



16

Songge Zhang (Student Member, IEEE) re-
ceived the B.E. degree in Electronic Informa-
tion Engineering from Zhengzhou University,
Zhengzhou, China, in 2019, and the M.S. de-
gree in Traffic Information Engineering and Con-
trol from Beihang University, Beijing, China, in
2022. He is currently pursuing the Ph.D. de-
gree in Communication and Information Sys-
tems at Peking University, Shenzhen, China. His
research interests include edge intelligence, net-
work for AI, and network resource management.

Wen Wu (Senior Member, IEEE) earned the
Ph.D. degree in Electrical and Computer Engi-
neering from University of Waterloo, Waterloo,
ON, Canada, in 2019. He received the B.E.
degree in Information Engineering from South
China University of Technology, Guangzhou,
China, and the M.E. degree in Electrical Engi-
neering from University of Science and Technol-
ogy of China, Hefei, China, in 2012 and 2015,
respectively. He worked as a Post-doctoral Fel-
low with the Department of Electrical and Com-

puter Engineering, University of Waterloo. He is currently an Associate
Researcher at the Frontier Research Center, Pengcheng Laboratory,
Shenzhen, China. His research interests include 6G networks, network
intelligence, and network virtualization. Dr. Wu serves as Track Co-
Chairs for IEEE VTC, and Workshop Co-Chairs for IEEE INFOCOM,
IEEE Globecom, and IEEE ICCC. He serves on the editorial board
for IEEE Networking Letter, Hindawi WCMC, China Communications,
and Springer PPNA. He has published over 100 refereed IEEE journal
and conference papers and 6 books/book chapters. Dr. Wu received
the World Top 2% Scientist Award 2023-2024, USENIX Security Distin-
guished Paper Award, IEEE HITC Award for Excellence (Early Career
Researcher), and IEEE CIC/ICCC Best Paper Award.

Lingyang Song (Fellow, IEEE) received his
Ph.D. degree from the University of York, UK,
in 2007. He worked as a research fellow at the
University of Oslo, Norway, until rejoining Philips
Research UK in March 2008. In May 2009, he
joined the School of Electronics Engineering
and Computer Science, Peking University, and
is now a Boya Distinguished Professor. His main
research interests include wireless communica-
tions, mobile computing, and machine learning.
Dr. Song is the co-author of many awards, in-

cluding the IEEE Leonard G. Abraham Prize in 2016, IEEE ICC 2014,
IEEE ICC 2015, IEEE Globecom 2014, and the best demo award in ACM
MobiHoc 2015. He received the National Science Fund for Distinguished
Young Scholars in 2017, and the First Prize in the Nature Science Award
of the Ministry of Education of China in 2017. Dr. Song has served as
an IEEE ComSoc Distinguished Lecturer (2015–2018), an Area Editor
of IEEE Transactions on Vehicular Technology (2019–), and is currently
the Director of the IEEE Communications Society Asia Pacific Board
(2024–2025). He is a Clarivate Analytics Highly Cited Researcher.

Xuemin (Sherman) Shen (Fellow, IEEE) re-
ceived the Ph.D. degree in electrical engineer-
ing from Rutgers University, New Brunswick, NJ,
USA, in 1990.

He is a University Professor with the Depart-
ment of Electrical and Computer Engineering,
University of Waterloo, Canada. His research fo-
cuses on network resource management, wire-
less network security, Internet of Things, 5G
and beyond, and vehicular networks. Dr. Shen
is a registered Professional Engineer of On-

tario, Canada, an Engineering Institute of Canada Fellow, a Canadian
Academy of Engineering Fellow, a Royal Society of Canada Fellow, a
Chinese Academy of Engineering Foreign Member, and an Engineering
Academy of Japan International Fellow.

Dr. Shen received the “West Lake Friendship Award” from Zhejiang
Province in 2023, the Canadian Award for Telecommunications Re-
search from the Canadian Society of Information Theory (CSIT) in 2021,
the R.A. Fessenden Award in 2019 from IEEE, Canada, Award of Merit
from the Federation of Chinese Canadian Professionals (Ontario) in
2019, James Evans Avant Garde Award in 2018 from the IEEE Vehicular
Technology Society, Joseph LoCicero Award in 2015 and Education
Award in 2017 from the IEEE Communications Society (ComSoc), and
Technical Recognition Award from Wireless Communications Technical
Committee (2019) and AHSN Technical Committee (2013). He has also
received the Excellent Graduate Supervision Award in 2006 from the
University of Waterloo and the Premier’s Research Excellence Award
(PREA) in 2003 from the Province of Ontario, Canada. He serves/served
as the General Chair for the 6G Global Conference’23, and ACM
Mobihoc’15, Technical Program Committee Chair/Co-Chair for IEEE
Globecom’24, ’16 and ’07, IEEE Infocom’14, and IEEE VTC’10 Fall. Dr.
Shen is the Past President of the IEEE ComSoc, the Vice President
for Technical & Educational Activities, Vice President for Publications,
Member-at-Large on the Board of Governors, Chair of the Distinguished
Lecturer Selection Committee, and Member of IEEE Fellow Selection
Committee of the ComSoc. Dr. Shen served as the Editor-in-Chief of
the IEEE IoT JOURNAL, IEEE Network, and IET Communications.


	Introduction
	Related Work
	Considered Scenario
	Proposed GHSL Scheme
	Convergence Analysis
	Training Delay Analysis and Problem Formulation
	Training Delay Analysis
	Problem Formulation

	Two-Stage User Grouping Algorithm
	First Stage: GPR-Based Group Optimization Algorithm
	Second Stage: Coalition Game-Based User Grouping Strategy Algorithm

	Performance Evaluation
	Simulation Setting
	Simulation Results
	Training Performance of the GHSL Scheme
	Performance of User Grouping Algorithm


	Conclusion
	References
	Biographies
	Songge Zhang
	Wen Wu
	Lingyang Song
	Xuemin (Sherman) Shen


