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Abstract—The advances in artificial intelligence (AI) and
edge computing enable edge intelligence to support pervasive
intelligent Internet of Things (IoT) applications in the future
wireless networks. We focus on deep neural network (DNN) based
classification tasks, and investigate how to improve the confidence
level and delay performance of DNN inference via device-edge
collaboration. We first develop a stochastic cumulative DNN
inference scheme that aggregates multiple random DNN inference
results and generates a cumulative DNN inference result with
improved confidence level. Then, based on a computation-efficient
DNN model deployment strategy with shared computation be-
tween a locally deployed fast DNN model and a full DNN model
partitioned between the device and edge, a closed-loop adap-
tive device-edge collaboration scheme is developed to support
cumulative DNN inference for multiple devices. We adaptively
determine how to offload DNN inference computation to the edge
and how to allocate transmission and edge computing resources
among multiple devices, for quality-of-service (QoS) satisfaction
in terms of both confidence level and inference delay with
resource and energy efficiency. A reinforcement learning (RL)
approach is used for adaptive offloading decision, which relies on
a resource allocation solution for reward calculation. Simulation
results demonstrate the effectiveness of the adaptive device-edge
collaboration scheme for cumulative DNN inference, in terms
of confidence level improvement, delay violation minimization,
network resource efficiency, and device energy efficiency.

Index Terms—Internet of Things (IoT), edge computing, edge
intelligence, DNN inference, partial offloading, device edge col-
laboration, reinforcement learning (RL).

I. INTRODUCTION

In the future wireless networks, artificial intelligence (AI)
models such as deep neural networks (DNNs) are pervasively
deployed to support diverse intelligent Internet of Things
(IoT) applications such as intelligent surveillance, autonomous
driving, and factory automation [1]–[9]. Many intelligent IoT
applications rely on DNN models for classification. For ex-
ample, in autonomous driving, the nearby objects should be
detected and classified to build an environment model for an
autonomous vehicle [10]. For a general classification task, a
pre-trained DNN model processes an input data sample such as
raw sensing data and generates a classification result as output,
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which is referred to as DNN inference. The DNN model out-
put, also referred to as a DNN inference result, has a random
confidence level due to the random amount of information
provided by a single data sample. As different data samples
corresponding to the same object usually capture different
spatial/temporal features, and different DNN models provide
random DNN inference results with different confidence levels
by processing the same data sample, a potential approach to
improving the confidence level of a classification task is to
consider multiple DNN inference results based on different
data samples and different DNN models. A straightforward
method is to select a DNN inference result with the maximum
confidence level and ignore other results. Then, if a confidence
level requirement is not satisfied, more data samples should be
collected and more computation should be triggered to obtain
a more accurate DNN inference result. This approach may lead
to high latency if the required confidence level is high, which
may violate a task completion time requirement. Actually, it
is inefficient to completely ignore the DNN inference results
with lower confidence levels, especially for those whose
confidence levels are close to the required threshold. This
observation motivates our investigation on a cumulative DNN
inference scheme that progressively incorporates the different
contributions from multiple random DNN inference results
for a classification task and improves a cumulative confidence
level for the task.

To obtain the multiple DNN inference results that support
cumulative DNN inference with computing resource effi-
ciency, the trade-off between confidence level and comput-
ing demand of different DNN models should be considered.
Typically, more complex DNN models with deeper layers
provide a higher confidence level on average at the cost of high
computing demand. If DNN inference is executed locally, it
is intractable for the resource-limited IoT devices to satisfy
a high confidence level requirement with low latency. An
edge-only solution, which fully offloads the raw data samples
with large data size to a resource-rich edge server, suffers
from a long transmission delay. Recently, collaborative infer-
ence over a device-edge-cloud computing hierarchy has been
investigated to improve the delay performance, by partially
offloading the DNN model computation to an edge server or
cloud [11]–[18]. For example, in a DNN partitioning scheme,
the inference before and at a selected cut layer is computed
locally at the device, and the remaining inference after the cut
layer (referred to as enhanced DNN inference) is computed at
the edge server based on the intermediate data generated at
the cut layer output, which reduces the total DNN inference
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Fig. 1: An illustration of computation-efficient DNN model deployment.

delay [18]. Benefiting from the delay improvement via device-
edge collaboration, a complex DNN model providing a high
confidence level can be used for real-time IoT applications. We
refer to this complex DNN model partitioned across device
and edge as a full DNN model. To improve the computing
efficiency, we also deploy a compact DNN model of less
layers with a lower confidence level at the device side, referred
to as a fast DNN model, which shares the local computation
with the full DNN model. Such a computation-efficient DNN
model deployment strategy with device-edge collaboration is
illustrated in Fig. 1. If both the fast and full DNN models
are executed for a data sample, two DNN inference results
(referred to as fast and full DNN inference results respectively)
are generated with a limited computation increase as compared
with the original DNN partitioning scheme.

Consider an edge-assisted multi-device IoT scenario, where
each IoT device has a classification task with quality-of-
service (QoS) requirements in terms of the confidence level
and task delay, and the computation-efficient DNN model
deployment strategy with device-edge collaboration is applied
to each device. For each device, a new input data sample is
first processed locally by a fast DNN model, generating a
fast inference result. The intermediate data at the cut layer
is temporally stored in a local cache at the device, which
is obtained as a by-product during fast DNN inference. A
full inference result is generated by offloading a cached
intermediate data sample to the edge server for enhanced DNN
inference, which consumes network resources for transmission
and edge computing. The fast or full DNN inference results
are sequentially aggregated to obtain a continually updated
cumulative DNN inference result, until the cumulative confi-
dence level reaches a predefined threshold. If the confidence
level requirement is not satisfied within a predefined deadline
in time, a delay violation penalty is applied to the device.

To improve the cumulative confidence level within a given
time and reduce the delay violation probability, it is preferable
to execute more full DNN inference than fast DNN inference,
i.e., offloading is preferred to local computing, as a full infer-
ence result has a higher confidence level on average. However,
more offloading means consuming more transmission and edge
computing resources, both of which are shared among multiple
devices. Moreover, the local energy consumption should be
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Fig. 2: A learning-based control loop supporting cumulative DNN inference
with device-edge collaboration for one device.

considered, as the IoT devices are usually battery powered and
thus the energy efficiency is a concern. As the intermediate
data size is relatively small, the local transmission energy for
offloading one intermediate data sample to obtain one full
inference result is usually smaller than the local computing
energy for fast DNN inference. A choice should be made
between using less local energy but more network resources to
offload a cached intermediate data sample for a full inference
result with a higher confidence level, and using more local
energy but no network resources to locally process a new data
sample for a fast inference result with a lower confidence level.

In this paper, a resource and energy efficient adaptive
device-edge collaboration scheme is presented, which supports
cumulative DNN inference among multiple devices in an
edge-assisted intelligent IoT scenario, for confidence level
satisfaction with the minimum delay violation penalty. The
main contributions are summarized as follows:
• A data-driven stochastic cumulative DNN inference

scheme is proposed for classification tasks, to combine
the contributions of multiple fast and full inference re-
sults, based on non-parametric probability density esti-
mation of both the fast and full DNN model outputs;

• A computation-efficient and device-edge collaborative
DNN model deployment strategy is proposed with shared
local computation between fast and full DNN models,
based on which full inference results can be generated
by reusing the intermediate data of fast inference;

• A learning-based control loop is designed to support
the cumulative DNN inference with adaptive device-edge
collaboration, as illustrated in Fig. 2. Based on a con-
tinually updated cumulative confidence level, an adaptive
offloading decision sequence is learned to dynamically
trigger the local fast DNN inference or the remote full
DNN inference for each device, until the cumulative
confidence level reaches a predefined threshold;

• A joint offloading and resource allocation problem is
studied, to minimize 1) the total cost accounting for
both network resources and local energy consumption,
and 2) the total delay violation penalty. The problem is
formulated as a Markov decision process (MDP), and a
deep Q-learning solution is proposed with a per-episode
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TABLE I: List of important notations

Parameters

c(k) Cost during time slot k
dAi Computing delay for fast DNN inference at device i

dEi (k) Computing delay for enhanced DNN inference of device i
during time slot k

dTi (k) Transmission delay for offloading one intermediate data
sample from device i to the AP during time slot k

eAi Local computing energy at device i
eTi (k) Transmission energy for offloading one intermediate data

sample by device i during time slot k
ei(k) Local energy consumption at device i during time slot k
fi (f0) CPU frequency (in cycle/s) of device i (edge server)
Ki Task completion time requirement for device i
Pi(k) Delay violation penalty of device i at time slot k
qi(k) Number of intermediate data samples in local cache of

device i at the beginning of time slot k
w Intermediate data size (output data size of cut layer l̂) in bit
ηT Confidence level requirement
ηi(k) Cumulative confidence level of device i at time slot k
µl Computing demand in CPU cycles for layer l ∈ LA ∪ LU
τ Time slot duration in second

Decision variables

ai(k) Number of intermediate data samples offloaded by device i
during time slot k

βTi (k) Fraction of bandwidth allocated to device i at time slot k
βEi (k) Fraction of edge computing resources allocated to device i

during time slot k
ρ(k) Network resource consumption ratio during time slot k

updated extra experience replay.
The rest of this paper is organized as follows. The system

model is described in Section II, and a joint offloading and
resource allocation problem is formulated in Section III. A
reinforcement learning based solution is discussed in Sec-
tion IV. Simulation results are presented in Section V, and
conclusions are drawn in Section VI. Table I summarizes the
main mathematical symbols.

II. SYSTEM MODEL

A. Edge-Assisted Intelligent IoT Scenario

Consider an IoT scenario with one access point (AP) and
multiple stationary IoT devices, in a time-slotted system with
time slot duration τ . Let integer k (k ≥ 1) be the time slot
index. The AP is co-located with an edge server. For each
device i in a device set I, we consider both a locally deployed
fast DNN model, and a full DNN model partitioned between
the device and the edge server, with shared layers from an
input layer to a pre-determined cut layer. The cut layer output
is referred to as an intermediate data sample. Let LA and
LU denote the layer sets of the fast and full DNN models
respectively, with subset L0 = LA ∩ LU including all the
shared layers. Let l̂ ∈ L0 denote the cut layer. For the full
DNN model, all the layers in subset L0 are executed locally,
while all the remaining layers in subset LU\L0, corresponding
to enhanced DNN inference, are executed at the edge server.

Each device i initiates a classification task at the beginning
of time slot k = 1, with a task completion time requirement,
denoted by Ti in second and Ki = bTiτ c in number of time
slots. For the task, there are multiple input data samples gener-
ated by an embedded data source in the device. For example,

a smart camera can generate consecutive video frames for the
classification of a moving object. Based on these input data
samples, multiple DNN inference results can be generated for
the task at device i over time by the fast and full DNN models.
A local cache is used at each device to temporarily store
the intermediate data samples during each execution of fast
DNN inference. Let qk ∈ R|I| denote the caching state at the
beginning of time slot k, where element qi(k) represents the
number of intermediate data samples stored in the local cache
of device i, with initial state qi(1) = 0. Let ak ∈ R|I| denote
an integer offloading decision vector during time slot k, where
element ai(k) represents the offloading decision variable for
device i. Specifically, if ai(k) = 0, no offloading takes place
but one new data sample is locally processed by fast DNN
inference at device i, generating one new fast inference result,
and one new intermediate data sample is added to the local
cache; otherwise, a number of ai(k) intermediate data samples
are offloaded from the local cache of device i to the edge
server for enhanced DNN inference, generating one or more
full inference results. Accordingly, the caching state at the
beginning of time slot k + 1, i.e., qk+1, is updated as

qi(k + 1) =

{
qi(k) + 1, ∀i ∈ I if ai(k) = 0

[qi(k)− ai(k)]
+ , ∀i ∈ I if ai(k) > 0.

(1)

At most qi(k) intermediate data samples can be offloaded from
device i during time slot k, i.e.,

0 ≤ ai(k) ≤ qi(k), ∀i ∈ I. (2)

B. DNN Model Layer Parameters

A DNN model for classification usually begins with a
feature extraction module composed mainly of convolution
(CONV) layers and pooling (e.g., MaxPool) layers, followed
by a classifier composed mainly of fully-connected (FC) lay-
ers. A pooling layer down-samples the output of a CONV layer
and reduces the data dimension. An activation layer is usually
applied to each CONV and FC layer output for nonlinearity. The
last FC layer is usually activated with Softmax function, to
generate a nonnegative probability vector adding up to one.

For CONV layer l ∈ LA ∪ LU , let
(
HI
l ,W

I
l , D

I
l

)
and(

HO
l ,W

O
l , D

O
l

)
denote the dimensions in height, width, and

number of channels, for the input and output feature maps
respectively. To generate the output feature map at layer l, a
number of DO

l filters, each with a dimension of
(
hl, hl, D

I
l

)
,

are applied to the input feature map, by sweeping each filter
over it and calculating the dot products [19], [20]. Each
filter creates a channel in the output feature map. Filter n
(1 ≤ n ≤ DO

l ) at layer l performs (hl)
2
DI
l multiplications

and (hl)
2
DI
l −1 additions, in calculating each of the HO

l W
O
l

data elements in the j-th channel of the output feature map.
For FC layer l ∈ LA ∪ LU , let XI

l and XO
l denote

the input and output dimensions, respectively. To compute
each of the XO

l output data elements, the XI
l -dimension

inputs are multiplied with the corresponding weights, and the
weighted inputs are then added together with a bias. Hence,
XI
l multiplications and XI

l additions are required for each
output data element at FC layer l.
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Let vl denote the number of output data elements at layer
l ∈ LA ∪ LU , given by

vl =

{
HO
l W

O
l D

O
l , if layer l is a CONV layer

XO
l , if layer l is an FC layer. (3)

Let πl denote the number of floating-point operations, in-
cluding both multiplications and additions, for computing one
output data element at layer l ∈ LA ∪ LU , given by

πl =

{
2 (hl)

2
DI
l − 1, if layer l is a CONV layer

2XI
l , if layer l is an FC layer.

(4)

Note that πl is set to 0 by default, as other types of DNN
layers such as the pooling and activation layers have negligible
computing demand in comparison with the CONV and FC
layers.

C. Computing Model
Let µl = ϕvlπl denote the computing demand in number

of CPU cycles for layer l ∈ LA ∪LU , where ϕ is the number
of CPU cycles for one floating-point operation. Let fi and f0
denote the CPU frequencies (in cycle/s) of device i and the
edge server respectively.

Let dAi denote the computing delay for one fast DNN
inference at device i, given by

dAi =

∑
l∈LA µl

fi
, ∀i ∈ I. (5)

We should have τ ≥ maxi∈I d
A
i , to ensure that the fast DNN

inference for one data sample at any device can finish in one
time slot. The local computing energy consumption for fast
DNN inference at device i, denoted by eAi , is given by

eAi = κi (fi)
3
dAi = κi (fi)

2
∑
l∈LA

µl, ∀i ∈ I (6)

where κi is the energy efficiency coefficient for device i [21].
For enhanced DNN inference, each device is allocated with

a virtual CPU at the edge server. Let βE(k) ∈ R|I| denote
the edge computing resource allocation decision vector during
time slot k, with element βEi (k) representing the fraction of
edge computing resources allocated to the virtual CPU of
device i. We have βEi (k) = 0 for device i if ai(k) = 0,
with

0 ≤ βEi (k) ≤ ai(k)M, ∀i ∈ I (7)

where M � 1 is a very large constant. The computing delay
for enhanced DNN inference of device i during time slot k,
denoted by dEi (k), is given by

dEi (k) =

∑
l∈LU\L0

µl[
βEi (k) + ε

]
f0
, ∀i ∈ I (8)

where 0 < ε � 1 is a constant to avoid dEi (k) being
undetermined. Let constant C(1)

i =
∑
l∈LU\L0

µl

f0
be the value

of dEi (k) for f0 total edge computing resources.

D. Communication Model
Let w = φvl̂ denote the intermediate data size in bit, where

φ is the number of bits to represent a floating-point number,

and vl̂ is given by (3) if cut layer l̂ is a CONV or FC layer.
In practice, the cut layer is usually selected as a pooling layer
following a CONV layer. In this case, vl̂ is the number of output
data elements after data down-sampling by the pooling layer.

Consider orthogonal frequency division multiple access
(OFDMA) for the uplink wireless transmission between IoT
devices and the AP with total radio spectrum bandwidth B.
Let βT (k) ∈ R|I| denote the bandwidth allocation decision
vector during time slot k, with element βTi (k) representing
the fraction of bandwidth allocated to device i. We have

0 ≤ βTi (k) ≤ ai(k)M, ∀i ∈ I. (9)

The transmission delay for offloading one intermediate data
sample from the local cache of device i to the edge server via
the AP during time slot k, denoted by dTi (k), is given by

dTi (k) =
w[

βTi (k) + ε
]
B log2

(
1 + pigi

σ2

) , ∀i ∈ I (10)

where pi denotes the transmit power of device i, gi denotes
the constant uplink transmission power gain between device
i and AP, and σ2 represents the noise power. Let constant
C

(2)
i = w

B log2(1+
pigi
σ2

)
be the value of dTi (k) when using

whole bandwidth B. We ignore the downlink delay for trans-
mitting the full inference results back to the devices due to
the small data size. The transmission energy consumption for
offloading one intermediate data sample from device i to the
AP during time slot k, denoted by eTi (k), is given by

eTi (k) = pid
T
i (k), ∀i ∈ I. (11)

E. Cumulative DNN Inference Scheme

Consider an M -class classification task, where class label
Y is a random variable with M possible integer outcomes in
{1, . . . ,M}. An input data sample, x, to the fast or full DNN
model is a random sample following an unknown probability
distribution. For example, a grayscale image with resolution
200×200 is a random sample from a 2002-dimension unknown
joint probability distribution of pixel intensity values. A fast
or full DNN model output, i.e., a fast or full inference result,
is represented by an M -dimension predicted class probability
vector, z = {zm}, with zm = Pr (Y = m|x) denoting the
predicted conditional probability of class m ∈ {1, · · · ,M}
given data sample x. The entropy of Y conditioned on x,
calculated as −

∑M
m=1 zm log zm, measures the uncertainty of

the DNN inference result z. We use one minus normalized
entropy to represent the confidence level of z, given by

η (z) = 1 +

M∑
m=1

zm log zm
logM

(12)

which has a value between 0 and 1 [22], [23]. Typically, a full
inference result has a higher confidence level on average than
a fast inference result.

Consider multiple DNN inference results for the M -class
classification task. Let zj = {zj,m} denote the j-th DNN
inference result. Let χj ∈ {0, 1} indicate whether zj is
generated by the fast or full DNN inference, with χj = 1
indicating full DNN inference, and χj = 0 otherwise. Let
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Zj = {z1, . . . ,zj} denote the set of DNN inference results
up to zj . Define the cumulative DNN inference result given Zj
as an M -dimension predicted class probability vector, denoted
by oj = {oj,m}, with oj,m = Pr (Y = m|Zj) representing
the predicted conditional probability of class m given Zj .
For true class m̂, zj,m̂ is referred to as the predicted true
class probability by the j-th DNN inference result, and oj,m̂
is referred to as the cumulative predicted true class probability
given Zj . Based on Bayes’ theorem and under the assumption
of conditional independence among different DNN inference
results given the same true class label, oj,m is written as

oj,m =
Pr (Y = m)

∏j
j′=1 Pr

(
zj′
∣∣∣Y = m

)
Pr (z1, . . . ,zj)

(13)

where Pr (Y = m) represents the prior class distribution,
and Pr

(
zj′
∣∣Y = m

)
represents the joint probability density

of the j′-th DNN inference result, i.e., vector zj′ , given
true class label Y = m. Let fAm (z) and fUm (z) denote the
joint probability density functions of the fast and full DNN
inference results given Y = m, respectively. Then, we have

Pr
(
zj′
∣∣Y = m

)
= (1− χj′) fAm (zj′) + χj′ f

U
m (zj′) . (14)

We use a data-driven non-parametric probability density esti-
mation method, such as kernel density estimation, to profile
functions fAm (z) and fUm (z) for each class m. Specifically, we
first partition a labeled training dataset into M class-specific
subsets according to the known class labels. With each class-
specific data subset, we collect a subset of fast inference results
and a subset of full inference results by running the fast and
full DNN models. Then, fAm (z) and fUm (z) can be profiled
with the corresponding subset of DNN inference results.

As denominator Pr (z1, . . . ,zj) in (13) is unknown, we can
calculate oj,m through normalization based on the property
that

∑M
m=1 oj,m = 1. Hence, (13) can be rewritten as

oj,m =
Pr (Y = m)

∏j
j′=1 Pr

(
zj′
∣∣Y = m

)
∑M
m=1

[
Pr (Y = m)

∏j
j′=1 Pr

(
zj′
∣∣Y = m

)] . (15)

The confidence level of cumulative DNN inference result oj ,
denoted by η (oj), is referred to as the cumulative confidence
level given Zj , and is calculated based on (12).

Note that (15) provides a general model to calculate a
cumulative DNN inference result given an arbitrary number
(e.g., j) of fast or full inference results for an M -class
classification task. In the considered scenario, each device i
obtains either one new fast inference result or at least one full
inference result during time slot k for its task, depending on
offloading decision ai(k). Let ηk ∈ R|I| denote the cumulative
confidence levels for all devices at the beginning of time slot
k, where element ηi(k) represents the cumulative confidence
level for device i with ηi(1) = 0. A cumulative DNN inference
result is updated at the end of time slot k for each device
i based on (15), by combining all the old inference results
through time slots 1 to k − 1 and the new inference results
obtained during time slot k. Accordingly, the new cumulative
confidence levels, i.e., ηk+1, can be calculated. For each
device i, the update is performed iteratively across multiple

time slots, until the classification task is completed when the
cumulative confidence level reaches a predefined threshold,
ηT . If the threshold, ηT , is reached before or at the required
task completion time limit, Ki, the QoS requirement of device
i is satisfied; otherwise, a delay violation penalty is applied
to the device. Let Pi(k) denote the delay violation penalty
of device i at the end of time slot k. The penalty is zero
for 1 ≤ k < Ki. For k ≥ Ki, if the required confidence
level is not satisfied, i.e., ηi(k) < ηT , the penalty increases
linearly with the number of time slots behind deadline. Let P
be a constant denoting the unit penalty for each time slot with
delay violation. Accordingly, we have

Pi(k) =

{
(k −Ki + 1)

+
P , if ηi(k) < ηT

0, otherwise.
(16)

III. JOINT OFFLOADING AND RESOURCE ALLOCATION
FOR MULTI-DEVICE CUMULATIVE DNN INFERENCE

A full inference result has a higher average confidence level
than a fast inference result, and more full inference results
generally improve more on the cumulative confidence level
once they are combined. Hence, device i tends to achieve a
higher gain in the cumulative confidence level (i.e., confidence
level gain) during time slot k for a larger value of ai(k), i.e.,
if more intermediate data samples are offloaded to the edge
server and processed by enhanced DNN inference. For each
device to reduce the delay violation penalty at task completion,
offloading more intermediate data samples for edge computing
is preferable in each time slot.

However, more offloading requires more resources for both
transmission and edge computing. Define the network resource
consumption ratio during time slot k, denoted by ρ(k), as the
upper limit for the fractions of total transmission and edge
computing resource usage during time slot k. Then, we have∑

i∈I
βTi (k) ≤ ρ(k) and

∑
i∈I

βEi (k) ≤ ρ(k). (17)

As the network resources are shared among multiple devices,
only feasible offloading decisions under the network resource
availability can be selected to guarantee the delay performance
in each time slot. Specifically, for device i, in order to
offload ai(k) intermediate data samples to the edge server and
obtain ai(k) full inference results during time slot k, the total
transmission and edge computing delay should not exceed time
slot length τ , given by

ai(k)
[
dTi (k) + dEi (k)

]
≤ τ, ∀i ∈ I. (18)

More offloading also requires more local transmission en-
ergy at the devices for transmitting more intermediate data
samples to the edge server, while no offloading incurs local
computing energy consumption for executing fast DNN in-
ference. Let ξ(k) = {ξi(k),∀i ∈ I} be an auxiliary binary
decision variable set in time slot k, with ξi(k) = 1 indicating
that at least one intermediate data sample is offloaded from
device i, and ξi(k) = 0 otherwise. We have

ai(k)

M
≤ ξi(k) ≤ ai(k), ∀i ∈ I. (19)
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Let ei(k) denote the local energy consumption at device i
during time slot k, given by

ei(k) = ξi(k)ai(k)eTi (k) + [1− ξi(k)] eAi , ∀i ∈ I. (20)

Consider the total cost during time slot k, denoted by c(k),
as the linearly weighted summation of the total local energy
consumption among all devices and the network resource
consumption ratio, with weight ω1 ∈ (0, 1), given by

c(k) = ω1

∑
i∈I

ei(k) + (1− ω1) ρ(k)

= ω1

∑
i∈I

{
ξi(k)ai(k)

piC
(2)
i

βTi (k) + ε
+ [1− ξi(k)] eAi

}
+ (1− ω1) ρ(k). (21)

To support the device-edge collaborative cumulative DNN
inference for multiple devices with QoS satisfaction and cost
efficiency, a joint offloading and resource allocation is neces-
sary, to minimize the long-run total cost and the total delay
violation penalty until the task confidence level requirements
at all devices are satisfied, by jointly determining the integer
offloading decision variables, ak, the binary auxiliary decision
variables, ξ(k), and the continuous resource allocation deci-
sion variables, ρ(k), βT (k) and βE(k), in each time slot k.
The long-run joint offloading and resource allocation problem
can be decoupled into a long-run adaptive offloading problem,
and multiple instantaneous resource allocation subproblems
in each time slot. Given an offloading decision vector, ak,
for time slot k, a resource allocation subproblem in Subsec-
tion III-A is solved to first check the feasibility and then
find the optimal resource allocation solutions, ρ∗(k), βT ∗(k),
and βE

∗
(k), with minimal cost c∗(k). For the long-run

adaptive offloading problem, a sequence of feasible offloading
decisions are adaptively determined based on the evolving
network status, by solving a Markov decision process (MDP)
in Subsection III-B with a reward function incorporating the
minimal cost c∗(k) by optimal resource allocation.

A. Resource Allocation Subproblem

Given an offloading decision vector, ak, for time slot k,
ξ(k) is a known vector determined by (19). Then, a resource
allocation optimization problem is formulated as

min
βT (k),βE(k),ρ(k)

c(k)

s.t. βTi (k), βEi (k), ρ(k) ∈ [0, 1] , ∀i ∈ I (22a)
(7), (9), (17) (22b)

ai(k)C
(2)
i

βTi (k) + ε
+
ai(k)C

(1)
i

βEi (k) + ε
≤ τ, ∀i ∈ I. (22c)

Constraint (22a) specifies the lower and upper limits for the
decision variables. The delay requirement in (18) is rewritten
as constraint (22c) with explicit resource allocation decision
variables. Problem (22) is non-convex due to nonlinearity
of the objective function and constraint (22c). We transform
the problem to a second-order cone programming (SOCP)
problem with zero optimality gap, by introducing two auxiliary

continuous decision variable sets, ψ(k) = {ψi(k),∀i ∈ I}
and δ(k) = {δi(k),∀i ∈ I}, and one auxiliary continu-
ous decision variable, ζ. Let C(3)

i = ξi(k)ai(k)piC
(2)
i and

C
(4)
i = [1− ξi(k)] eAi be two constant values for device i

given ak. Then, the SOCP problem is given by

min
βT (k),βE(k),ζ
ψ(k),δ(k),ρ(k)

ω1

∑
i∈I

[
C

(3)
i ψi(k) + C

(4)
i

]
+ (1− ω1) ρ(k)

s.t. (22a), (22b)

ai(k)
[
C

(2)
i ψi(k) + C

(1)
i δi(k)

]
≤ τ, ∀i ∈ I (23a)[

βTi (k) + ε
]
ψi(k) ≥ ζ2, ∀i ∈ I (23b)[

βEi (k) + ε
]
δi(k) ≥ ζ2, ∀i ∈ I (23c)

ζ = 1. (23d)

An optimum of problem (22) is either a unique optimum
or one of multiple optimal solutions to SOCP problem (23).
Specifically, second-order cone constraint (23b) must be active
(i.e., achieving equality) in an SOCP optimum, and an SOCP
optimum with inactive second-order cone constraint (23c) can
always be mapped to another SOCP optimum with active
constraint (23c), without affecting other constraints and the
objective value. Relevant proofs involving the active/inactive
status of second-order cone constraints can be found in [24].

The SOCP problem can be solved using an optimization
solver such as Gurobi [25]. The feasibility of each candidate
offloading decision, ak, is checked by checking the feasibility
of the SOCP problem. Let A denote the set of feasible
offloading decisions. The minimal cost, c∗(k), under each
feasible offloading decision, ak, is pre-calculated by solving
the resource allocation subproblem, whose optimal solution is
obtained by solving the SOCP problem.

B. Adaptive Offloading Problem

The cumulative confidence level, ηi(k), for each device
i shows an increasing trend with random fluctuations over
time, as more fast or full inference results are combined.
Hence, the dynamics in the cumulative confidence levels of
all devices depend on the sequence of offloading decisions.
An offloading decision at time slot k, which is to offload
more intermediate data samples from a device whose current
cumulative confidence level, ηi(k), is low and the remaining
time to deadline, Ki − k, is short, potentially brings more
benefit in terms of reducing the total delay violation penalty.
Therefore, the current cumulative confidence levels at each
device, ηk, and the current time slot index, k, should be
considered in making adaptive offloading decisions over time.
Moreover, the current caching state at each device, qk, should
be considered, as the number of offloaded intermediate data
samples from a device should not exceed the number of
intermediate data samples currently stored in the local cache.

To minimize the total delay violation penalty for all devices
while minimizing the total cost, we consider the following
reward function, rk, for each time slot k, given by

rk = − exp (ω2c
∗(k))−

∑
i∈I

Pi(k) (24)
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Algorithm 1: The proposed deep Q-learning Algo-
rithm

1 Initialize: θ and θ̂ for evaluation and target DQNs.
2 for each episode do
3 Initialize the state as s1.
4 for each learning step do
5 Observe current state sk, and select action ak

according to an ε-greedy policy.
6 Execute action ak, collect reward rk and next

state sk+1, and determine uk (done signal).
7 Store transition (sk,ak, rk, sk+1, uk) into the

ordinary replay memory and temporary
memory.

8 if done then
9 if total penalty is zero then

10 Pop out all transitions in the temporary
memory to the extra replay memory.

11 Empty out the temporary memory.

12 Sample random mini-batches of transitions
(sn,an, rn, sn+1, un) from both the ordinary
and extra replay memory.

13 Perform a gradient descent step on θ based on
2N transitions according to (26).

14 Update ε as ε×∆ε, if ε > ε0.
15 Every Kθ steps, set θ̂ = θ.

16 Output: Trained evaluation and target DQNs.

where ω2 is a positive weight. We use an exponential function
of c∗(k) to increase the cost gaps among different offloading
decisions and make rk more sensitive to the action. Then, the
adaptive offloading problem can be formulated as an MDP,
with state sk = [qk,ηk, k], action ak ∈ A, and reward rk. Let
A(s) ⊂ A denote a state-dependent feasible action subspace,
which includes all actions satisfying constraint (2) at state s.
The MDP problem is formalized as

max
{ak,∀k}

E

[
lim
K→∞

1

K

K∑
k=1

rk

]
s.t. ak ∈ A(sk), ∀k. (25)

IV. DEEP REINFORCEMENT LEARNING SOLUTION

We propose a deep Q-learning algorithm presented in
Algorithm 1 to solve the MDP in (25) using a reinforce-
ment learning (RL) approach. Deep Q-learning adopts two
deep Q networks (DQNs) with the same neural network
structure, i.e., an evaluation DQN (Q) with weights θ and
a target DQN (Q̂) with slowly updated weights θ̂, as ap-
proximators for a state-action value function Q(sk,ak) =

E
[∑K−1

k′=k γ
k′−krk′ |sk,ak

]
, where K is the maximum num-

ber of learning steps in an episode and γ ∈ (0, 1] is a discount
factor. Both θ and θ̂ are randomly initialized before training
(line 1) and then continually updated. Over every Kθ learning
steps, θ̂ is replaced by θ (line 15).

An RL agent running Algorithm 1 interacts with the in-
telligent IoT environment in a sequence of episodes. Each
episode contains a finite and variable number of learning steps,
one learning step for one time slot. An episode starts when
the devices initiate a new group of classification tasks, and
ends when the last device finishes its task with confidence
level satisfaction. At the beginning of each episode, the state
is initialized as s1 = [q1,η1, 1] = [0,0, 1] (line 3). The
total number of time slots in an episode can be smaller
than maxi∈I Ki if all tasks are finished before the required
deadlines, in which case there is no delay violation penalty.
It can also be larger than maxi∈I Ki when there is delay
violation penalty. Let uk be a binary flag indicating if time
slot k is the last time slot in the corresponding episode. If
uk = 1, the episode terminates at time slot k, and a done
signal is generated by the environment.

At the beginning of time slot k within each episode, the
RL agent observes environment state sk and takes action
ak using an ε-greedy policy (line 5), i.e., ak is given by
either argmaxa∈A(sk)

Q(sk,a) with probability 1 − ε based
on the evaluation DQN (Q), or a random action in A(sk)
with probability ε. We use a gradually decreasing exploration
probability, ε, from 1 to a minimum value ε0, with decaying
factor ∆ε ∈ (0, 1), to transit smoothly from exploration to
exploitation (line 14). At the end of time slot k, the agent
receives reward rk by executing action ak, and observes new
state sk+1. The done signal, uk, is checked to determine
the episode termination (line 6). Then, the new transition
(sk,ak, rk, sk+1, uk) is added to both an ordinary replay
memory which is adopted in traditional deep Q-learning algo-
rithms and a temporary memory which is a new component
in our algorithm (line 7). The temporary memory gradually
gathers the transitions in each episode and is emptied out per
episode (line 11). Only if the total delay violation penalty
for all transitions in an episode is zero, the corresponding
transitions in the temporary memory are popped out and stored
in another new memory component, an extra replay memory,
before the temporary memory is emptied out at the end of each
episode (lines 9 and 10). The per-episode updated extra replay
memory, along with the temporary memory, is dedicated for
handling the delay violation penalty which depends on all
transitions from the beginning of an episode. The extra replay
memory stores only transitions in the zero-penalty episodes,
which are rare transitions with QoS satisfaction especially
at the early learning stage. Then, for training the evaluation
DQN via a gradient descent step on θ, a mini-batch of N
experiences are sampled from the ordinary replay memory
and another mini-batch of N experiences are sampled from
the extra replay memory (lines 12 and 13), which improves
the sampling frequency for the rare no-penalty transitions
compared with the traditional deep Q-learning algorithms. The
gradient decent step is given by

θ ← θ + αE [(yk −Q(sk,ak;θ))∇θQ(sk,ak)] (26)

where α is the learning rate and yk is a target value estimated
by target DQN, given by

yk = rk + γ max
a∈A(sk+1)

Q̂(sk+1, a; θ̂). (27)
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TABLE II: System parameters in simulation

Parameters Value

Bandwidth (B) 15 MHz
Noise power (σ2) −104 dBm
Transmit power (pi) 20 dBm
Channel gain (gi) 4 × 10−13

Local CPU frequency (fi) 0.45 GHz
Edge server CPU frequency (f0) 20 GHz
Energy efficiency coefficient (κi) 10−28

CPU cycles for a floating-point operation (ϕ) 4
Bits for a floating-point number (φ) 32

If an episode terminates at time slot k, yk is set as rk.

V. SIMULATION RESULTS

A. Simulation Setup

We set up a simulation model with three IoT devices, each
being a smart camera, under the coverage of one AP. A
classification task for each device is to classify a moving object
under its surveillance by using multiple video frames (data
samples). The devices have differentiated task completion time
requirements, which are [9, 11, 13] respectively in number
of time slots. The devices have the same confidence level
requirement, ηT , for their classification tasks. Other system
parameters are given in Table II [21], [26], [27]. We use a
typical video dataset UCF101 integrated in Tensorflow, which
contains videos capturing moving objects belonging to 101
classes. For simplicity, we select 600 videos belonging to 5
classes, referred to as UCF5 video dataset. For each video,
we extract the video frames at a frame sampling rate of 5
frames per second, and randomly select J = 50 video frames
as data samples. All the extracted data samples from the UCF5
video dataset constitute a 5-class image dataset. By randomly
reordering the J data samples from each video by 100 times,
we create 100 different sequences of data samples, each being
a data trace based on which a classification task is performed.
As such, 60000 classification tasks with different data traces
are simulated. Note that the video frames are not disordered
in a real IoT scenario. Here, we disorder the video frames to
create more synthetic data traces for simulation.

The layer parameters (including both types and output
dimensions) for both the fast and full DNN models are given
in Table III. The input layer and the first group of CONV
and MaxPool layers are shared between both DNN models.
The last FC layers in each DNN model are activated with
Softmax function, and all other CONV and FC layers are
activated with Relu function. The fast and full DNN models
are jointly trained by minimizing the combined loss of both
model outputs based on the 5-class image dataset [22], [23],
[28], [29]. Then, we generate a set of fast inference results
and a set of full inference results corresponding to the image
dataset, based on which the joint probability density functions,
fAm (z) and fUm (z), for each class m are profiled by using the
kernel density estimation in Matlab.

Under the simulation setup, we have constants C(1)
i = 0.02

and C
(2)
i = 0.115, and set the time slot length as τ =

TABLE III: Layer parameters of full and fast DNN models

Full DNN model Fast DNN model
Layer Dimension Layer Dimension

INPUT 224× 224× 3 INPUT 224× 224× 3

CONV 36× 36× 32 CONV 36× 36× 32

MaxPool 17× 17× 32 MaxPool 17× 17× 32

CONV 17× 17× 256 CONV 17× 17× 5

MaxPool 8× 8× 256 MaxPool 8× 8× 5

CONV 8× 8× 384 Flatten 320

CONV 8× 8× 384 FC 5

CONV 8× 8× 256 − −
MaxPool 3× 3× 256 − −
Flatten 2304 − −

FC 4096 − −
FC 4096 − −
FC 1000 − −
FC 5 − −

TABLE IV: Parameters in deep Q-learning algorithm

Learning parameters Value

Learning rate (α) 10−4

Discount factor (γ) 0.85
Minimum exploration probability (ε0) 0.01
Decaying factor for exploration probability (∆ε) 0.9995

Number of steps to replace θ̂ by θ (Kθ) 200
Memory size 2000
Batch size (N ) 32

dAi = 0.288s. At most two intermediate data samples can
be offloaded and finish the enhanced DNN inference during
one time slot. Accordingly, the action space, A, for the deep
Q-learning algorithm includes 10 discrete offloading actions,
i.e., (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 2, 0),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (2, 0, 0). Both the evaluation and
target DQNs have three hidden layers with (128, 64, 32) neu-
rons and Relu activation functions. We set weight ω2 = 30
and unit penalty P = 400 in the reward function. Other
learning parameters are summarized in Table IV. We evaluate
the performance of the deep Q-learning algorithm for three
different values of ηT among {0.93, 0.95, 0.97}. To evaluate
the trade-off between local energy consumption and network
resource consumption, we vary the value of weighting factor
ω1 in (21) among {0.90, 0.95, 0.99}. The three weights are
all close to 1, but they place different priorities on the
two costs. Both ω1 = 0.90 and ω1 = 0.95 place more
priority on minimizing the network resource consumption,
while ω1 = 0.99 places more priority on minimizing the local
energy consumption. We use ω1 = 0.90 by default.

B. Performance Evaluation

We first evaluate performance of the proposed cumulative
DNN inference scheme. For each classification task, cumula-
tive DNN inference is performed by sequentially incorporating
J DNN inference results corresponding to J data samples in
the associated data trace. Fig. 3 shows the average cumulative
confidence level for 60000 simulated classification tasks as the
number of data samples increases, when all data samples are
processed by either the full or fast DNN model. The standard
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(b) Fast DNN Inference

Fig. 3: Relationship between cumulative confidence level and number of data samples for both full and fast DNN inference.
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Fig. 4: Performance of cumulative DNN inference scheme with full DNN inference for three data traces.

deviations of the results are also plotted for reference. We
observe that the average cumulative confidence level shows
an increasing trend and gradually approaches one for both full
and fast DNN inference. The increasing speed with full DNN
inference is higher, demonstrating that the average confidence
level gain with one more full inference result is larger than that
with one more fast inference result. The average confidence
level gain per inference shows a decreasing trend and gradually
approaches zero. The standard deviation is large especially at
a small number of data samples, which gradually decreases
and approaches zero with more data samples, with a higher
decreasing speed for full DNN inference. A large standard de-
viation captures the uncertainty in cumulative DNN inference,
which is due to randomness in the DNN inference results.

As the cumulative DNN inference scheme sequentially
incorporates different random DNN inference results corre-
sponding to each data sample in a data trace, the relationship
between the cumulative confidence level and the number
of data samples changes for different data traces. Fig. 4
shows three different performance metrics for the proposed
cumulative DNN inference scheme with full DNN inference as
the number of data samples, j, increases in three different data
traces. The performance metrics include 1) the cumulative con-
fidence level until data sample j, i.e., η (oj), 2) the predicted
true class probability with single data sample j, i.e., zj,m̂, and
3) the cumulative predicted true class probability until data
sample j, i.e., oj,m̂. Only the results for j ≤ 10 are shown, as
we observe in Fig. 3(a) that the average cumulative confidence

level with full DNN inference is very high with small standard
deviation at j = 10. The vertical dashed lines in Fig. 4 indicate
the data sample positions with false full inference results. For
a false inference result, zj = {zj,m}, the class label with the
maximum predicted probability is not the true class label m̂,
i.e., m̂ 6= arg maxMm=1 zj,m, in which case zj,m̂ is usually
small, as demonstrated in the result. Next, we look into each
sub-figure corresponding to different data traces. In Fig. 4(a),
η (oj) keeps increasing from 0 until it approaches 1 with only
four data samples and then remains stable, while oj,m̂ follows
a similar trend as η (oj). We also observe that zj,m̂ is around
or above 0.6 for j ≤ 6, indicating that each inference result for
j ≤ 6 provides correct inference with a good confidence level,
which results in the initial fast increasing speed for η (oj)
and oj,m̂. Although there are two consecutive false inference
results at j = 7 and j = 8, η (oj) remains high, as there have
been sufficient inference results providing correct inference
with a good confidence level before j = 7. In Fig. 4(b), η (oj)
and oj,m̂ also show a roughly gradual increasing trend with one
big drop at j = 2. The drop is due to a false inference result
at j = 2. As there is only one correct inference result with
good confidence level before j = 2, the false inference result
at j = 2 brings a significant negative impact. To counteract the
negative impact brought by false inference and to obtain a high
cumulative confidence level, it requires more data samples
to be aggregated. For data trace 2, four more data samples
with correct inference and good confidence levels after j = 2
are aggregated to have η (o6) approaching 1. An interesting
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Fig. 5: Performance of the cumulative DNN inference scheme versus number
of data samples for different offloading ratios.

observation is that the cumulative confidence level remains
high although there is a subsequent false inference at j = 7,
indicating that the cumulative DNN inference scheme is more
robust to false inference if there have been a sufficient number
of data samples and if the current cumulative confidence level
is sufficiently high. In Fig. 4(c), the initial values of η (oj)
and oj,m̂ are small due to two consecutive false inferences at
the beginning. After that, we see a gradual increasing trend
for both η (oj) and oj,m̂. The false inference at j = 5 brings
a small and almost negligible drop in η (oj), and the false
inference result at j = 8 does not degrade the performance,
demonstrating the robustness of the cumulative DNN inference
scheme with a sufficient number of “good” data samples.

For a classification task, define the offloading ratio as the
fraction of full inference results among all DNN inference
results that are combined using the cumulative DNN inference
scheme. Fig. 5 shows two performance metrics, i.e., the
average cumulative confidence level and the accuracy, for
60000 simulated classification tasks as the number of data
samples increases, under a different offloading ratio at 0% (i.e.,
pure fast DNN inference), 20%, 60%, and 100% (i.e., pure full
DNN inference). Here, the accuracy is defined as the average
ratio of correct inference among all the simulated classification
tasks. The standard deviations of the cumulative confidence
levels for offloading ratios at 20% and 60% are also plotted for
reference. With more data samples, both performance metrics
gradually increase to one (100%), with a larger increasing
speed for a larger offloading ratio, demonstrating the benefit
of offloading in terms of both confidence level and accuracy
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Fig. 6: Training loss for different confidence level requirements at ω1 = 0.90.
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Fig. 7: Episodic total reward versus training episode for different confidence
level requirements at ω1 = 0.90.

improvement. As the confidence level represents uncertainty
in a DNN inference result rather than its accuracy, a single
DNN inference result with high confidence level is possible
to be false, if the predicted probability for a wrong class is
high. However, if the cumulative confidence level is high, it
is highly likely that the cumulative DNN inference result is
accurate, as the predicted true class probability is improved
by aggregating more data samples. Hence, the cumulative
DNN inference reduces the uncertainty in prediction results
and increases the robustness to randomness and even false
detections in the DNN inference results.

Next, we evaluate the performance of the proposed deep
Q-learning algorithm for adaptive offloading decisions. To
determine the state transitions for the cumulative confidence
levels, we use the average cumulative confidence level traces
obtained from the cumulative DNN inference scheme. Fig. 6
shows the convergence performance of the proposed deep Q-
learning algorithm in terms of the training loss versus the
number of learning steps at ω1 = 0.90, for different confidence
level requirements (ηT ). As mentioned, weight ω1 = 0.90
places more emphasis on minimizing the network resource
consumption than local energy consumption. In this case, it
is preferable to execute more fast DNN inference locally to
minimize the total cost. As each fast DNN inference tends
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Fig. 8: The increase of cumulative confidence levels over time at different confidence level requirements.
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Fig. 9: Cost comparison with different values of ηT for ω1 = 0.90.

to provide less confidence level gain and at most one fast
inference result can be generated at each device in one time
slot, it requires more time slots to satisfy the confidence level
requirement. Hence, if ηT is large, it is more difficult for
the RL agent to learn the no delay violation penalty behavior
corresponding to confidence level satisfaction before deadline.
Accordingly, with a larger value of ηT , it is more difficult
for the learning algorithm to converge and it takes a longer
time to reduce the training loss to below 10−2. For example,
the training loss for ηT = 0.93 is quickly reduced to below
10−5 at around 30000 learning steps, while the training loss
for ηT = 0.97 is slowly reduced to below 10−2 in a more
than doubled training time. Fig. 7 shows the episodic total
reward during the training process at ω1 = 0.90, for different
values of ηT . It is observed that the total reward for ηT = 0.93
increases most quickly and converges at around 1700 episodes
without delay violation penalty (indicated by negative glitches
in the episodic total reward). In comparison, the total reward
for ηT = 0.95 increases in a slightly slower speed and
converges after 2000 episodes. The total reward for ηT = 0.97
has the worst convergence, with huge delay violation penalty
before 2000 episodes and significant fluctuations between
episodes 2000 and 5000. It finally converges after around 5000
episodes. After convergence, the delay violation penalty is
suppressed, and a larger total reward (or a lower total cost)
is obtained for a lower confidence level requirement.

Fig. 8 shows the cumulative confidence levels over time
for the three devices with the trained RL agents at different
values of ηT for ω1 = 0.90. We observe that the confidence
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Fig. 10: Cost comparison with different weight ω1 for ηT = 0.95.

level requirements for all the devices are satisfied at (or very
close to) the required deadlines, i.e., in [9, 11, 13] time slots.
As local computing incurs less cost than offloading but has
lower confidence level gain for ω1 = 0.90, the RL agent learns
an offloading decision sequence with minimal offloading that
satisfies the confidence level requirements without delay vi-
olation and with minimum cost. An intuitive solution which
always prioritizes offloading cannot provide such intelligence
in terms of cost minimization. The trained RL agent also
learns how to prioritize the offloading opportunities among
the three devices with different delay requirements. For device
1 with the most stringent delay requirement, the cumulative
confidence level increases faster than the other two devices
due to earlier offloading opportunities.

Due to the priority on minimizing the network resource
consumption at ω1 = 0.90, we see in Fig. 9 that the episodic
average network resource consumption ratio (ρ̄) decreases
with more learning episodes, while the episodic total local
energy shows an increasing trend, demonstrating a trade-off
between the two metrics. For a smaller value of ηT , the
average resource consumption is lower as less offloading is
triggered to satisfy the QoS requirement, but the total energy
is higher due to a larger local computing energy for one fast
DNN inference than the transmission energy for offloading one
intermediate data sample under the simulation setup. Fig. 10
further demonstrates the trade-off between energy and resource
consumption with different weight ω1 at a constant confidence
level requirement ηT = 0.95. For both ω1 = 0.90 and
ω1 = 0.95, we see a decreasing trend in average resource
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Fig. 11: Comparison of episodic total reward versus training episode with and
without extra experience replay.

consumption and an increasing trend in total local energy over
the training process. However, we see an opposite trend for a
large weight ω1 = 0.99, as energy becomes dominant in the
cost. For a smaller ω1 value, the average resource consumption
is lower and the total energy is higher after convergence.

To evaluate the benefit of the extra experience replay in the
proposed deep Q-learning algorithm, we compare the episodic
(smoothed) total reward during the training process of the
proposed algorithm and a benchmark Q-learning algorithm
without extra experience replay at ω0 = 0.90 and ηT = 0.97,
as shown in Fig. 11. A mini-batch of 2N experiences are
sampled from the ordinary replay memory for training at
each learning step in the benchmark. We observe that the
total reward in the proposed algorithm converges after around
5000 episodes with no penalty at most time points, while the
penalty in the benchmark is still large after convergence. We
also observe that the total reward in the benchmark increases
earlier due to more training with diverse training experiences
in the early training stage. In the proposed algorithm, the
sampled experiences from the extra replay memory lack
diversity in the early training stage, as the episodes with
no penalty are rare and the number of samples in the extra
replay memory increases slowly. As a result, the training with
sampled experiences from the extra replay memory does not
fully explore the state action space at the early training stage.
However, after the extra replay memory stores sufficient good
samples, the total reward finally converges to a larger value
with negligible delay violation penalty. For the benchmark, the
earlier convergence to a worse solution is because it cannot
put priority on remembering and learning from the special
good samples in the no-penalty episodes. In this case, all the
samples have equal priority, and are gradually replaced by new
samples once the memory is full.

VI. CONCLUSION

In this paper, we develop a device-edge collaborative in-
ference framework in an edge-assisted multi-device intelligent
IoT scenario. A data-driven stochastic DNN inference scheme
is employed at each device to improve the confidence level for

DNN-based classification tasks, while an RL-aided adaptive
device-edge collaboration scheme supports the cumulative
DNN inference among multiple devices with QoS satisfac-
tion and cost efficiency. Simulation results demonstrate the
effectiveness of the proposed inference framework including
both the cumulative DNN inference scheme and the adaptive
device-edge collaboration scheme. The former provides a
theoretical foundation for further improving the confidence
level of general DNN-based classification tasks by combining
multiple DNN inference results under the performance limit
of DNN models, which is potentially useful in AI applica-
tions with an extremely high reliability requirement such as
those in remote surgery and autonomous driving. The latter
demonstrates the benefit of hierarchical computing (e.g., across
the device and edge hierarchy) in terms of cost efficiency
and delay satisfaction, which potentially can be explored for
ultra-reliable low-latency applications in the future wireless
networks.
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