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Abstract—This paper aims to investigate the joint optimization
of multidimensional constellation design (MCD) and multiuser
detection (MUD) for grant-free non-orthogonal multiple access
(GF-NOMA). We first formulate the joint optimization problem
and derive its explicit expression using variational inference.
Due to the intractability of the joint optimization problem, we
then resort to deep learning (DL) and approximate the optimal
solution in an end-to-end manner. Specifically, we develop a novel
variational autoencoder based network, such that the distribution
of the multidimensional constellations can be accessed and
optimized. We also design a multi-task learning architecture on
the decoder side to deal with the complex coupling among signal
streams, by taking the MUD process as multiple distinctive yet
related tasks. The derivation of the loss function for network
training is presented, and simulation results are provided to
validate the superior performance of the proposed method over
conventional approaches.

I. INTRODUCTION

Grant-free non-orthogonal multiple access (GF-NOMA) is a

promising solution for massive-type communication (mMTC)

and the Internet of Things (IoT), since it exploits both the

benefits of non-orthogonal signal superposition as well as

grantless access mechanism [1]. By non-orthogonally allocat-

ing radio resources among devices, GF-NOMA can support

massive connectivity with limited resources. Besides, GF-

NOMA allows users to autonomously transmit their data with-

out preceding scheduling process, which can greatly reduce the

signaling overhead required for the coordination between the

base station (BS) and users.

The two most important components in GF-NOMA are

multidimensional constellation design (MCD) and multiuser

detection (MUD), where MCD assigns uniquely decodable

symbols for users while MUD recovers user messages by uti-

lizing the distinctions among these symbols. There have been

numerous works investigating the MCD and MUD for GF-

NOMA. For MCD, low-density sequences [2], constellation

rotation [3], and golden angle modulation [4] were exploited

to mitigate inter-user interference. For MUD, the factor graph-

based message passing algorithm (MPA) was used in sparse

code multiple access (SCMA) [5]. Successive interference

cancellation (SIC) was adopted in [6], which distinguishes

different users based on the power difference. Moreover,

compressed sensing (CS) techniques were introduced in MUD

by taking advantage of the sporadic transmission [7].

However, the aforementioned works isolate the design of

MCD and MUD, which is suboptimal according to the data

processing theorem [8]. A joint optimization approach is

thus necessitated to fully unlock the benefit of GF-NOMA.

Nonetheless, it is quite challenging to tackle such a joint opti-

mization problem due to the intractable system model caused

by the complicated signal superposition [9]. This motivates us

to utilize deep learning (DL) techniques that can approximate

the optimal solution by tapping the universal approximation

theorem of deep neural networks (DNNs).

Thanks to the strong ability to solve intricate and intractable

problems, DL has been widely applied in wireless communica-

tions [10] [11]. One of the most promising applications is end-

to-end communication, as it provides an effective paradigm to

jointly optimize all communication blocks. The key idea of

end-to-end communication is to interpret the whole communi-

cation system as an autoencoder, where both transmitter and

receiver are implemented as neural networks and optimized in

an end-to-end manner. The idea was first pioneered in [12], and

has led to many extensions [13] [14]. However, existing works

on end-to-end communication are usually based on the tradi-

tional autoencoder, where the encoder outputs a single value

that may be insufficient to describe the constellation attribute.

On the contrary, variational autoencoder provides a probabilis-

tic manner by outputting the mean value and variance of the

encoded vectors, through which we can make insight into the

constellation distribution [15]. Moreover, the signal streams

in GF-NOMA are intricately superposed, and the detection

objectives of different users are mutually conflicting, which

brings about challenges for traditional autoencoders.

In this paper, we propose a DL-based method to jointly

optimize MCD and MUD for GF-NOMA. Specifically, we

develop a variational autoencoder network and incorporate it

with multi-task learning to tackle the complex signal coupling.

Simulation results reveal that the proposed method enables

significant gains compared to conventional methods.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As illustrated in Fig. 1, we consider an uplink GF-NOMA

system with one BS and N users, where all the terminals are

equipped with a signal antenna. We assume that the nth user

wishes to send a log2 M -bits message sn ∈ {1, · · · ,M} to the

BS. The message sn is modulated into a K-dimensional sym-

bol xn = [xn,1, · · · , xn,K ]T ∈ C
K×1 with a power constraint

||xn|| ≤ K. Particularly, we consider the typical overloaded
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Fig. 1. System model of the uplink GF-NOMA system.

GF-NOMA system, where the number of users is larger than

the symbols’ dimension, i.e., N > K. Therefore, signals from

all users are superimposed and transmitted over K orthogonal

resources (e.g., time slots or OFDM subcarriers). The received

signal at the BS can be represented as

y =

N∑
n=1

diag(hn)xn + n, (1)

where hn = [hn,1, · · · , hn,K ]T ∈ C
K×1 is the channel vector

from the nth user to the BS over K resources, and n is the

noise vector that follows the complex Gaussian distribution

CN (0, σ2IK) with IK being a K ×K identity matrix.

Upon receiving the superimposed signal y, the BS tries to

retrieve all the user messages through MCD process. The over-

all communication procedure of user n can be mathematically

viewed as the cascade of the MCD process and the MUD

process, which is given by

ŝn = gn

(
N∑

n=1

diag(hn)fn(sn) + n

)
, (2)

where ŝn is the estimate of the original message sn, fn : sn →
xn is the user-specific MCD function that maps sn into xn,

and gn : y → ŝn is the MUD function that recovers sn from

y.

B. Problem Formulation

The main purpose of the joint optimization is to find the

optimal MCD/MUD pair ([f∗
n]

N
n=1, [g

∗
n]

N
n=1) that minimizes

the error probability
∑N

n=1 P(ŝn �= sn). We start with the

optimal MUD, which can be obtained by maximizing the

following marginal likelihood

g∗n = argmax
gn

P (sn; gn) = argmax
gn

∫
P (sn|y; gn)P (y) dy,

(3)

where P (y) is the probability distribution of y and P (sn|y; gn)
is the posterior probability that gn correctly recovers sn given

y.

Taking all the N signal streams into account, we can obtain

the optimal MUD as

[g∗n]
N
n=1 = argmax

gn,∀n∈N

N∏
n=1

P (sn; gn), (4)

where N = {1, 2, · · · , N}. Since message sn is independent

with each other, we can further simplify (4) as

[g∗n]
N
n=1 = argmax

gn,∀n∈N
P (s; [gn]Nn=1) = argmax

gn,∀n∈N
logP (s; [gn]Nn=1),

(5)

where s = [s1, · · · , sN ] and P (s; [gn]Nn=1) =∫
P (s|y; [gn]Nn=1)P (y) dy. However, it is non-trivial to

directly optimize logP (s; [gn]Nn=1) over [gn]
N
n=1, since the

multidimensional integral P (s; [gn]Nn=1) is intractable due to

the unknown P (y). According to the law of total probability,

P (y) can be presented as P (y) =
∫
P (y|s)P (s) ds, which

implies that the MCD mapping should be determined before

obtaining [g∗n]
N
n=1. Therefore, we resort to the variational

inference and rewrite logP (s; [gn]Nn=1) as

logP (s; [gn]Nn=1)

=

∫
Q(y|s; [fn]Nn=1) logP (s; [gn]Nn=1) dy

= EQ(y|s;[fn]Nn=1)
[− logQ(y|s; [fn]Nn=1) + logP (y, s; [gn]Nn=1)]

+KL(Q(y|s; [fn]Nn=1)||P (y|s; [gn]Nn=1)), (6)

where Q(y|s; [fn]Nn=1) is an arbitrary parameterized (by

[fn]
N
n=1) conditional probability distribution of y given s, and

KL(p(z)||q(z)) =
∫
p(z) log p(z)

q(z) dz is the Kullback-Leibler

divergence (KLD) that measures the similarity between two

distributions. A more detailed derivation can be found in [15]

and is omitted here for brevity.

Since the KLD is non-negative, (6) can be written as

logP (s; [gn]Nn=1) ≥ L([fn]Nn=1, [gn]
N
n=1)

= EQ(y|s;[fn]Nn=1)
[− logQ(y|s; [fn]Nn=1) + logP (y, s; [gn]Nn=1)]

(7)

where L([fn]Nn=1, [gn]
N
n=1) is called the variational lower

bound [16]. Therefore, maximizing logP (s; [gn]Nn=1) is equiv-

alent to maximizing L([fn]Nn=1, [gn]
N
n=1), which can also be

written as

L([fn]Nn=1, [gn]
N
n=1)

= EQ(y|s;[fn]Nn=1)
[logP (s|y; [gn]Nn=1)]

−KL(Q(y|s; [fn]Nn=1)||P (y))

=

N∑
n=1

EQ(y|s;[fn]Nn=1)
[logP (sn|y; gn)]

−KL(Q(y|s; [fn]Nn=1)||P (y)). (8)

It is noted that Q(y|s; [fn]Nn=1) can be regarded as the MCD

process that maps sn to xn, n ∈ N and then generates y, as

there exists a deterministic mapping between y and x in (1).

Likewise, P (sn|y; gn) can be considered as the MUD process,

which extracts the estimation of sn from y. Therefore, we

readily see that (5) has been converted into a joint optimization
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Fig. 2. Architecture of the proposed network.

problem of the MCD and MUD, i.e.,

P1 : argmin
fn,gn,∀n∈N

−L([fn]Nn=1, [gn]
N
n=1),

s.t. y =
N∑

n=1

diag(hn)xn + n. (9)

However, it is intractable to solve (9) analytically, due to the

infinite searching spaces of fn and gn as well as the mutually

conflicting objectives of gn. For this reason, we develop a DL-

based method to approximate the optimal solution. Our key

idea is to parameterize (9) as a variational autoencoder, where

the encoder and the decoder are trained to mimic the optimal

MCD and MUD, respectively. The details are elaborated in

the next section.

III. DL-BASED JOINT OPTIMIZATION FOR GF-NOMA

A. Proposed Network Architecture

As depicted in Fig. 2, the proposed variational autoencoder

network consists of an encoder denoted by FΘ(·) and a

decoder denoted by GΦ(·), where Θ and Φ are the network

parameter sets corresponding to [fn]
N
n=1 and [gn]

N
n=1, respec-

tively. In essence, the encoder approximates the optimal MCD

by learning the optimal mapping between user messages s
and multidimensional symbols xn, n ∈ N, while the decoder

imitates the optimal MUD by learning the optimal mapping

from y back to s. The details and functionalities of the encoder

and the decoder are presented as follows, based on which

we give the explicit mathematical relations between Θ and

[fn]
N
n=1 as well as Φ and [gn]

N
n=1.

1) Encoder: As the input of the encoder, we apply the one-

hot encoding to represent user messages, which can simplify

(9) into a classification problem. In one-hot encoding, each

message sn ∈ {1, · · · ,M} is represented by a M -dimensional

vector mn ∈ {0, 1}M , where the snth element is 1 and the

others are all 0.

Since it is difficult for a user to exchange information with

other users in the GF-NOMA system, the MCD should be

performed in a distributed manner. Accordingly, we employ

N isolated DNNs at the encoder, denoted as FΘn
: mn →

xn, n ∈ N, where Θn is the parameter set of the nth DNN.

For layer l of FΘn with Nl−1 input and Nl output, the output

vector can be expressed as

zln = fln(W
l
nzl−1

n + bln), (10)

where W l
n ∈ R

Nl×Nl−1 and bln ∈ R
Nl are the weight matrix

and bias, respectively. The hyperbolic tangent (Tanh) function

(i.e., fln(x) =
1−e−2x

1+e−2x ) is adopted as the activation function in

all the hidden layers and output layer. As a result, the overall

input-output affine of FΘn is

FΘn
(mn) = fL−1

n (fL−2
n (· · · (f1n(mn;Θ

1
n), · · · )ΘL−2

n );ΘL−1
n ),
(11)

where L is the network depth and Θl
n = {W l

n, b
l
n}. A

normalization operation is employed at the output layer to

satisfy the power constraint. It is worth noting that the com-

munication signals are usually modeled as complex numbers,

while most DNNs are based on real-valued operations. Hence,

to facilitate the learning process, the complex signals are

converted to their real signal version by concatenating their

real and imaginary parts. Therefore, the output of the nth

DNN is a real-valued vector with 2K dimension, and the

corresponding constellation is determined as1

xn = FΘn
(mn)(1:K) +

√−1FΘn
(mn)(K+1:2K), (12)

where FΘn
(mn)(i:j) is the vector composed of the ith element

to the jth element of FΘn
(mn). The outputs of all the DNNs

are superimposed and then sent over the channel. Substituting

(11) into (1), the received signal can be rewritten as

y =
N∑

n=1

diag(hn)FΘn
(mn) + n. (13)

Consequently, we can approximate the MCD process in (9)

by [15]

Q(y|s; [fn]Nn=1) = N (y|FΘ(M),
σ2

2
I2K), (14)

where M = [m1, · · · ,mN ], FΘ(M) =∑N
n=1 diag(hn)FΘn(mn), and I2K is a 2K × 2K identity

matrix. Note that (14) involves the mean value and variance

of y, which can be obtained by treating the channel as the

output layer of the encoder [15].

1Hereafter, for convenience, we assume that all the complex vectors have
been converted to the real signal version without changing their mathematical
expressions.



2) Decoder: We assume that the channel state information

(CSI) is perfectly known at the decoder, since it can be

obtained by the BS through pilot-based channel estimation

method. As shown in Fig. 2, the decoder mainly comprises

two parts, namely the decoupling module and the multi-task

detection module. The decoupling module aims to decompress

y to a 2KN dimensional vector, and the multi-task detection

module incorporates multi-task learning by taking the message

recovery of each user as one task. Note that without the decou-

pling module, the multi-task detection module has to recover

all user messages directly from y. This wastes the capability of

multi-task learning to extract the inherent correlation among

different tasks and may degrade the detection performance.

Specifically, the decoupled vector can be expressed as

a = GΦD
(y, [hn]

N
n=1), (15)

where ΦD is the parameter set of the decoupling module.

The decoupled vector is evenly split into N vectors an, n ∈
N, which are then forwarded to the multi-task detection

module. The multi-task detection module can simultaneously

optimize all the mutually conflicting detection processes, by

taking advantage of the similarities between different tasks

[17]. Particularly, we adopt the sluice network that can be

trained to mediate the interaction between different tasks,

so that the multi-task detection module avoids the costly

searching process for potentially optimal relational parameters.

The details of the sluice network can be found in [18] and are

omitted here for brevity.

It should be mentioned that the last layer of the multi-

task detection module is a softmax layer, which ensures

that the output of the decoder forms a probability vector

M̂ = [m̂1, · · · , m̂N ] with ||m̂n||1 = 1, n ∈ N. According-

ly, the MUD process can be approximated as a categorical

distribution

P (sn|y; gn) =
M∏
i=1

m̂mni
ni

=

M∏
i=1

GΦ(y, [hn]
N
n=1)

mni
ni , (16)

where GΦ(y, [hn]
N
n=1)ni

= GΦM
(GΦD

(y, [hn]
N
n=1))ni

, ΦM

is parameter set of the multi-task detection module, and

GΦM
(·)ni is the nith element of the multi-detection module

output vector.

B. Loss Function

The loss function is a measure of how accurately the neural

network is able to predict the expected outcome. When training

the neural network, we aim to minimize the loss function by

adjusting network parameters. Therefore, to ensure that Θ and

Φ can be fine-tuned to approximate [f∗
n]

N
n=1 and [g∗n]

N
n=1, the

loss function should be identical to the objective function of

P1. Substituting (14) and (16) into (9), the loss function can

be derived as

L(Θ,Φ) =

−
N∑

n=1

EN (y|FΘ(M),σ
2

2 I2K)
[

M∑
i=1

mni
log(GΦ(y, [hn]

N
n=1)ni

)]

+KL(N (y|FΘ(M),
σ2

2
I2K)||P (y))

= LR(Θ,Φ) + LKL(Θ), (17)

where the first right-hand side (RHS) term LR(Θ,Φ) =
−∑N

n=1 EN (y|FΘ(M),σ
2

2 I2K)
[
∑M

i=1 mni
log(GΦ(y, [hn]

N
n=1)ni

)]

represents the expected reconstruction loss and the second

RHS term LKL(Θ) = KL(N (y|FΘ(M), σ2

2 I2K)||P (y))
is the regularization term that makes y to follow a prior

distribution.

However, computing LR(Θ,Φ) involves a sampling pro-

cess, which stunts the backpropagation since the sampling

operation is non-differentiable. To tackle this issue, we lever-

age the reparameterization trick in [15], whose core idea is to

randomly sample ε from a unit Gaussian, and then shift the

randomly sampled ε by the mean value of y and scale it by

the variance of y. Since EN (z;μ,σ2)[f(z)] = EN (ε;0,1)[f(μ +

σε)] = 1
S

∑S
s=1 f(μ + σε(s)), LR(Θ,Φ) can be represented

by a differentiable estimator as [15]

LR(Θ,Φ)

= −
N∑

n=1

S∑
s=1

M∑
i=1

mni
log(GΦ(FΘ(M) + ε(s), [hn]

N
n=1)ni

)

= −
N∑

n=1

LRn
(Θ,Φ), (18)

where LRn
(Θ,Φ) = −∑S

s=1

∑M
i=1 mni

log(GΦ(FΘ(M) +
ε(s), [hn]

N
n=1)ni), S is the number of samples, and ε(s) ∼

N (0, σ2

2 I2K).
Now the onus remains in determining P (y), with which

we can analytically derive LKL(Θ) that affects the dis-

tribution of learned constellations. According to Shannon’s

theorem, we know that the transmission rate can be improved

by inducing Gaussianity on y. Therefore, we set P (y) =

N (PRI2K , σ2

2 I2K) and derive LKL(Θ) as

LKL(Θ)

= KL(N (y|FΘ(M),
σ2

2
I2K)||N (PRI2K ,

σ2

2
I2K))

=
2

σ2
(FΘ(M)− PRI2K)T (FΘ(M)− PRI2K), (19)

where PR is the average received signal power.

Combining (17), (18), and (19), the overall loss L(Θ,Φ)
can be determined as

L(Θ,Φ) =
N∑

n=1

LRn
(Θ,Φ)

+
2

σ2
(FΘ(M)− PRI2K)T (FΘ(M)− PRI2K). (20)
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Fig. 3. The projection of the learned multidimensional constellations over 4 orthogonal resources.

It is found in [15] that when batch size is large e-

nough (e.g., more than 100), the sample number S can

be set to 1. Meanwhile, if the distribution of user mes-

sages, i.e., P (M), is fixed, FΘ(M) is approximately e-

quivalent to PRI2K according to the law of large num-

bers. Therefore, (20) can be expressed as L(Θ,Φ) =
−∑N

n=1

∑M
i=1 mni log(GΦ(FΘ(M) + ε, [hn]

N
n=1)ni), which

is exactly the cross-entropy loss function that is widely used

in DL-based applications.

Remark 1. Note that when P (M) is variable (e.g., proba-
bilistic encoding) or n does not follow a zero-mean Gaussian
distribution (e.g., interference-limited communication), (20)
is different to the cross-entropy loss, which implies that the
cross-entropy loss function is no longer optimal. Therefore,
classic loss functions may not be suitable in some wireless
communication scenarios, which indicates that more insights
should be offered into the loss function design. As this problem
would merit an independent study and is beyond the scope of
this paper, we will investigate it in future work.

IV. SIMULATION RESULTS AND EVALUTION

A. Simulation Setup

Our simulation setup is based on the typical NOMA scenari-

o [2], where N = 6 users share K = 4 orthogonal resources.

The message length is set to 2 bits, i.e., M = 4, for all users.2

The encoder of the proposed network consists of 6 DNNs. For

each DNN, there are 4 hidden layers with 32 neurons. The

decoupling module has 1 DNN comprising 5 hidden layers

with 64 neurons. The multi-task detection module is a one-

layer sluice network consisting of 12 DNNs and 1 sluice,

where each DNN has 5 hidden layers with 64 neurons. The

sluice is composed of 1 DNN with 3 hidden layers and 64
neurons for each hidden layer.

The proposed network is Xavier initialized and trained with

80, 000 training datapoints that are randomly sampled from

one-hot vectors. These training datapoints are applied as both

the input data and the output label, which can be realized by

initializing the pseudorandom number generators in users and

BS with the same seed. The network is trained at a specific

2It should be noted that the proposed network can be extended to longer
messages and larger networks with slight modifications of the network
structure.

signal to noise ratio (SNR) of 6dB and is tested at a wide

range of SNR. The training process is conducted for 5, 000
epochs using stochastic gradient (SGD) algorithm with Adam

optimizer. The learning rate is set to be 2×10−5 and the batch

size is 500.

For comparison, we examine the performance of SCMA

with MPA detector (SCMA-MPA), multiuser shared access

with MMSE-SIC detector (MUSA-SIC), and the conventional

end-to-end network (E2E) [12]. In SCMA-MPA, we apply the

user-to-resource mapping and codebook in [19], and set the

iteration number of MPA to 5. In MUSA-SIC, the QPSK

modulation is adopted and the complex spreading code is

generated based on a 3-ary set {1, 0,−1}. In conventional E2E

network, the DNNs in both the encoder and the decoder have

the same width and depth as those in the proposed network.

B. Simulation Results

We first evaluate the multidimensional constellations learned

by the proposed network. For clarity, we project the mul-

tidimensional constellations onto a set of orthogonal 2-

dimensional signal spaces (i.e., the I and Q channels), where

each set of the signal spaces refer to one orthogonal resource.

Fig. 3 illustrates the projection of the multidimensional con-

stellations over 4 orthogonal resources, where different colors

and shapes represent different users. It can be observed that

the learned multidimensional constellations are spread without

overlapping in every resource. Specifically, the encoder learns

to transmit different messages with various power, which intro-

duces power diversity among users. Besides, the constellations

of different users are rotated with different angles around

the origin, which further reduces the inter-user interference.

These observations indicate that the proposed network can

learn to multiplex users by exploiting both the power and

phase domains. Furthermore, unlike SCMA where symbols

are spanned sparsely, the proposed network allows each user

to access all the resources, which may enhance the robustness

of transmitting symbols and improve the detection accuracy.

We then compare the average block error rate (BLER) per-

formance, i.e., 1
N

∑N
n=1 P(ŝn �= sn), of the proposed network

with competing methods. Fig. 4 depicts the average BLERs of

the proposed network and competing methods under AWGN

channel. Notably, DL-based methods (proposed network and

E2E) outperform the conventional methods (SCMA-MPA and
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Fig. 4. BLER performance comparisons under the AWGN channel.
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Fig. 5. BLER performance comparisons under the Rayleigh channel.

MUSA-SIC) by a large margin. For example, DL-based meth-

ods achieve around 9 dB gain over conventional methods when

SNR is higher than 0 dB, which demonstrates the superiority

of joint optimization and the potential of end-to-end learning.

Moreover, the proposed method is only slightly better than

the E2E method, since the latter is sufficient to extract user

messages from the simple signal structure in AWGN channel.

Fig. 5 compares the average BLER of the proposed network

with competing methods under Rayleigh fading channel. We

observe that the proposed network still achieves the lowest

BLER among all methods, but the performance gaps between

DL-based and conventional methods are narrowed. This is

because the transmitting symbols are greatly distorted by

fading channels, and it is not easy for DNNs to suppress

random fading effects through limited training samples and

network size. Besides, the average BLER of the proposed

network keeps decreasing as SNR increases, while there are

error floors in the average BLER of the E2E method. The

reasons are as follows: (i) The optimal detection mappings at

different SNRs are hardly related, since the Rayleigh fading

channel is randomly generated. The networks are trained at a

specific SNR, so it is challenging for them to learn a detection

mapping that is optimal at all SNRs. (ii) The proposed network

can learn the relationship among different detection tasks

through the multi-task learning structure, which is relatively

stable compared with random fadings. Hence, the proposed

network can learn a good detection mapping, if not the best,

for a wide range of SNRs.

V. CONCLUSION

This paper has proposed a novel DL-based method for the

joint design of MCD and MUD in the GF-NOMA system.

A variational autoencoder is constructed to approximate the

optimal MCD and MUD through training, and multi-task

learning is adopted to handle the intricate signal structures.

Moreover, the corresponding loss function is derived and ana-

lyzed, which may shed light on the design of communication

domain knowledge-integrated loss function. Simulation results

have demonstrated the effectiveness of the proposed method

in terms of BLER performance. We will consider a more

practical scenario for our future work, where the users are

heterogeneous and have different transmitting rates.
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