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Abstract—In this paper, we propose the multi-autonomous un-
derwater vehicle (AUV) collaborative data collection in integrated
underwater acoustic communication and detection networks
(UCDNs). Specifically, multiple AUVs collaboratively traverse the
sensor nodes to collect data while detecting the environment to
avoid obstacles along the trajectory. We first propose a time
division multiple access (TDMA)-based packet transmission and
active bistatic sonar detection strategy for UCDNs to transmit the
sensor data and detect the unknown environment. Furthermore,
we formulate the collaborative data collection problem as a mixed
combinatorial and sequential quadratic optimization problem to
minimize the trajectory length of multiple AUVs. To solve this
problem, we decouple it into two subproblems, i.e., the node
traversal subproblem and the trajectory planning subproblem.
The former subproblem is converted into the multi-traveling
salesman problem (MTSP), which is solved by the Q-learning-
based algorithm to improve the robustness. The latter subprob-
lem is optimally planning each AUV’s trajectory while avoiding
obstacles, which is solved by the soft actor-critic (SAC) algorithm
to online make continuous trajectory decisions. Simulation results
demonstrate that the proposed scheme outperforms benchmarks
in terms of energy consumption and overall trajectory length.

I. INTRODUCTION

With the development of oceanic exploration, underwater
data collection is indispensable in many applications, such
as underwater pollutant monitoring, earthquake detection, and
tsunami warning [1]. As an important way of long-distance un-
derwater wireless communications, underwater acoustic com-
munication networks (UACNs) have become the main way of
underwater data collection [2], [3]. Traditional UACNs are
designed to collect data from sensor nodes to sink nodes
with multi-hop networks, which suffer from several disadvan-
tages, including unbalanced energy consumption and unreli-
able communication links [4]. To cope with these issues, multi-
autonomous underwater vehicles (AUV) collaborative data col-
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lection has been envisioned as viable alternative because AUVs
can cruise to sensor nodes closely to save transmission power
of sensor nodes and improve communication reliability [5].

Current research on multi-AUV collaborative data collection
focuses on two aspects, i.e., the trajectory planning for AUVs
to access sensor nodes and the data transmission among nodes.
Firstly, most research on AUV trajectory planning focuses on
planning fixed or pre-determined trajectory that is calculated
based on sensor nodes’ positions [6]–[8]. Nonetheless, fixed
trajectory planning for AUV is not reliable without consider-
ing the volatile environment. Furthermore, the learning-based
trajectory planning scheme has been proposed to adapt to the
oceanic environment dynamically [9]–[13]. However, to avoid
collision with obstacles, AUVs have to detect the unknown
environment, which consumes large energy and makes online
decisions. Secondly, with respect to packet transmission, most
research focuses on how to reduce the energy consumption of
sensor nodes while disregarding the energy consumption of
AUVs [7]–[9], [14]. Underwater acoustic communication and
detection are indispensable in enabling AUVs to detect the
environment and collect information whereas they are loaded
onto AUVs separately, resulting in large space occupation
and low energy efficiency. Since the hardware and signal
processing techniques of communication and detection are
similar, researchers are dedicated to integrating detection and
communication, which can reduce energy consumption [15]–
[17]. For data collection in the integrated underwater acoustic
communication and detection networks (UCDNs), multiple
AUVs transmit the integrated underwater acoustic communica-
tion and detection (UCD) signal to transmit packets and detect
oceanic environments to avoid collision with obstacles.

Multi-AUV collaborative data collection strategy in UCDNs
needs to meet the following requirements. Firstly, multiple
AUVs need to cooperate with each other to evade unknown
obstacles and avoid duplicate data collection, so the environ-



mental detection information and collection status need to be
instantaneously shared. Secondly, the trajectory planning de-
cisions of AUVs must be made in real-time to avoid obstacles
based on the detection information.

In this paper, we propose a multi-AUV collaborative data
collection scheme in UCDNs. We first propose a centralized
network architecture for UCDNs to control information shar-
ing among multiple AUVs. In this architecture, the controller
can gather detection information and collection status from
AUVs, based on which the controller can make decisions on
data collection and trajectory planning for AUVs. Secondly,
we propose the time division multiple access (TDMA) packet
transmission strategy and the active bistatic/multi-static sonar
detection strategy to transmit packets and detect the environ-
ment via UCD signals. Then, we formulate the collaborative
data collection problem as a mixed combinatorial and sequen-
tial quadratic optimization problem to minimize the trajectory
length of multiple AUVs. To solve this problem, we decouple
it into two subproblems. The first subproblem is the node
traversal problem to decide the traversal sequence of sensor
nodes, which is converted into the multi-traveling salesman
problem (MTSP) and solved by the Q-learning algorithm. The
second subproblem is the online trajectory planning problem
to reach the traversal node and avoid obstacles, which is solved
by the soft actor-critic (SAC) algorithm to online make contin-
uous trajectory decisions. Simulation results demonstrate that
the proposed scheme outperforms the benchmarks in terms of
energy consumption and overall trajectory length.

The contributions of this paper are summarized as follows:
1) We propose the communication and detection strategy in

UCDNs via UCD signal to reduce energy consumption.
2) We decouple the collaborative data collection problem

into two subproblems, i.e., the node traversal prob-
lem and the trajectory planning problem. We propose
learning-based algorithms to plan the shortest trajectory
length for AUVs while avoiding obstacles along the
trajectory.

The remainder of this paper is organized as follows. The
system model is given in Section II. Section III presents the
problem formulation, followed by the proposed algorithm in
Section IV. Simulation results are given in Section V, and the
conclusion is drawn in Section VI.

II. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, the UCDNs for multi-AUV collabo-
rative data collection is a centralized network, which consists
of multiple AUVs in different clusters, a data center, several
sensor nodes, and several control nodes.
• Sensor Nodes: Multiple sensor nodes equipped with sens-

ing devices are randomly distributed in the area.
• AUVs: AUVs are equipped with integrated communica-

tion and detection modems to communicate among nodes
and detect obstacles in the surrounding environment via
UCD signals. Multiple AUVs are divided into different
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Fig. 1: Network model.
clusters under the control of a control node and are
responsible for the allocated sensor nodes.

• Control Nodes: Underwater control nodes act as the
cluster heads of AUVs. They are responsible for gathering
data collection status and detection information from
AUVs. The control nodes store the locations of the al-
located sensor nodes to schedule the collection sequence
of sensor nodes for AUVs. All decision-making processes
of the AUV are handled by the control nodes, which
are responsible for planning the trajectory for AUVs to
collect data from sensor nodes and avoid obstacles.

• Data Center: The data center holds the locations of all
sensor nodes to allocate the responsible area for each
controller and its AUV cluster. It collects relevant infor-
mation from all sensor nodes and control nodes to obtain
the network’s topology and overall state information.

B. Integrated Communication and Detection in UCDNs

In UCDNs, the UCD signals are used for both communi-
cation and detection to save energy. Therefore, we have de-
signed an integrated communication and detection strategy in
UCDNs. In this strategy, a TDMA-based packet transmission
strategy is proposed to coordinate the packet transmission and
echo signals receiving among sensor nodes, AUVs, control
nodes, and obstacles. In addition, an active bistatic/multi-static
detection scheme is proposed to detect the distance away from
obstacles by analyzing the echo signals of UCD signals.

1) Communication Scheme: The communication scheme
consists of three steps: Firstly, the controller broadcasts a
packet periodically. Each AUV responds to the broadcast pack-
ets, based on which the controller can obtain a global network
view and environment information. Based on the information,
the controller can plan trajectories for each AUV to collect data
from sensor nodes while avoiding collisions. Secondly, during
the trajectory, each AUV sends the UCD signals periodically
to search the sensor nodes and detect the environment. Finally,
sensor nodes receive the UCD signals and upload data packets
to AUVs. In a period of time, the AUVs and sensor nodes
repeat the above steps until the next time round. Next, we
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Fig. 2: An example of active bistatic detection in UCDNs.
will present the AUV-sensor communication and controller-
AUV communication process in detail.

AUV-Sensor Communication: The AUV-sensor communica-
tion includes search packets that the AUV sends to sensor
nodes and data packets that sensor nodes send to the AUV.
Each AUV sends search packets periodically to request sensor
nodes to upload data. These search packets also have detection
functionality. Sensor nodes will reply response packets to
upload the sensing data after receive search packets.

Controller-AUV Communication: The communication be-
tween the controller and AUV includes the downlink packets
that the controller sends to the AUV and the uplink packets
that the AUV sends to the controller. The controller issues
instructions to the AUV and uploads information to the data
center. When receiving the packets, each AUV demodulates
the header, and if the target node is not itself, it ignores the
subsequent content.

2) Detection Scheme: The detection process is based on
active bistatic/multi-static sonar detection. In each time slot,
AUVs periodically emit UCD packets to search for nearby
sensor nodes. The packets can be reflected by obstacles.
Other AUVs will receive these echo packets and demodulate
the header of the packet to obtain the source node ID and
transmission time of the packet. Based on this information, the
AUV can determine the distance that the packet has traveled
and send it to the controller. Then the controller can calculate
the distance and angle of the obstacles related to each AUV,
and thus determine the position of obstacles.

As shown in Fig. 2, an example of active bistatic detection
is presented. If there exists an obstacle S, it will reflect the
UCD signal sent by AUV A and produce an echo packet. Both
AUV A and AUV B will receive the echo. The distance and
angle of the obstacle are calculated by{

dAS/γ = dSB/(α− θ) = dAB/β,
γ + α+ β − θ = π.

(1)

Here, α, β, γ and θ are shown in Fig. 2. dAB is the distance
between AUV A and AUV B, which is monitored by the
controller. dAS and dSB is the distance between AUV A, AUV
B, and S, respectively, which can be calculated by AUV A
and AUV B based on the echo signal, i.e.,{

dAS = (trA − tsA)vs/2,
dSB = (trB − tsA)vs − dAS .

(2)

Here, trA and trB are the receiving time of the echo packet for
AUV A and AUV B, respectively. tsA is the sending time of
the UCD packet and vs is the underwater acoustic speed.

Regarding the communication and detection strategy, the
energy consumption for the AUV An can be calculated by

En =

Tn∑
t

(PA
n + P cd

n + P c
n)∆t. (3)

Here, Tn is the data collection time for AUV An; PA
n , P cd

n ,
and P c

n represent the power for AUV to move, detection and
communication, and process information, respectively; ∆t is
the shortest unit of time in AUV operation. In traditional
UACNs, P cd

n is divided into the communication power and
the detection power, which consumes more energy.

III. PROBLEM FORMULATION

A. Original Optimization Problem

To collect data from K sensor nodes while avoiding obsta-
cles efficiently, the following constraints should be considered.

1) Each AUV is released from the same starting point, and
returns to the same point after collecting data, i.e.,

N∑
n=1

K∑
j=1

pn0j =

N∑
n=1

K∑
i=1

pni0 = N, (4)

where pnij expresses that AUV An selects to traverse
from sensor node ki to sensor node kj , pn0j = 1 denotes
that AUV is released from the starting point, and pni0 = 1
denotes that AUV returns to the starting point.

2) Data from each sensor node is collected only once, i.e.,
N∑

n=1

K∑
i=1

pnij =

N∑
n=1

K∑
j=1

pnij = 1, ∀ i, j = 1, ...,K, (5)

where pnij = 1 represents the trajectory selection of AUV
An from node ki to node kj , and pnij = 0, otherwise.

3) The AUV should avoid all obstacles, i.e.,
d0min − d(Ln(t),Sm) ⩽ 0, ∀ t ∈ T n

i,j , n ∈ N,m ∈M,
(6)

where Ln(t) represents the AUV An’s locations at
time t, Sm represents the location of obstacle Sm,
d(Ln(t),Sm) is the distance between the AUV An and
the obstacle Sm, and d0min denotes the minimum safety
distance between the AUV and the obstacles.

4) Dn(t) indicates whether obstacles are avoided, i.e.

Dn(t) =

{
0, if (6) holds,
+∞, otherwise. (7)

The trajectory length of AUV’s each step is expressed by
l(n, t) = d(Ln(t),Ln(t− 1)) + d(Ln(t),Sk)Dn(t). (8)

The objective of the proposed scheme is to minimize the
trajectory length of N AUV, which is expressed by

P0 : min
L∈L

N∑
n=1

T n∑
t=1

l(n, t) (9a)

s.t. (4), (5), and (6). (9b)

In the above problem, T n is time consumption for AUV An

to traverse all allocated sensor nodes. The problem is a mixed
combinatorial and sequential quadratic optimization problem.

B. Problem Decomposition

To solve this original optimization problem, we decouple it
into the node traversal and the trajectory planning problem.

Subproblem 1: The first subproblem is to decide the
traversal sequence of sensor nodes and can be modeled as
the MTSP. The objectives of this subproblem are expressed as
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P1 : min
Pn∈P

N∑
n=1

∑
(i,j)∈Pn

d(ki, kj)p
n
ij (10a)

s.t. (4) and (5). (10b)

The objective function (10a) minimizes the linear distance that
the AUVs collect data from all nodes, where d(ki, kj) is the
linear distance length between the sensor node ki and kj , Pn is
the sequence of traversal sensor nodes for AUV An. To solve
this combinatorial optimization problem, we propose the Q-
learning-based node traversal algorithm.

Subproblem 2: The second subproblem is optimizing the
optimal trajectory for AUV An to depart from the starting
node to the destination node with the shortest trajectory and
obstacle avoidance along the trajectory, which is defined as

P2 : min
L∈L,(i,j)∈Pn

T n
i,j∑

t=1

l(n, t) (11a)

s.t. (6) and (7). (11b)

Here, T n
i,j is time consumption for An to move from node ki

to kj . To solve this sequential quadratic optimization problem,
we propose the SAC-based trajectory planning algorithm.

IV. PROPOSED LEARNING-BASED ALGORITHM

A. Q-Learning-Based Node Traversal Algorithm
Due to the node traversal problem being NP-hard, the Q-

learning-based algorithm is applied to solve this problem to
avoid getting stuck in local optima and improve the robustness,
aiming to collect data from all sensor nodes using the shortest
traversal trajectory. Assuming there are K sensor nodes, we
first set up a K ×K Q-value table. The (s, a)-th element in
the table represents the Q-value for selecting sensor node ka
as the next traversal node when starting from node ks. The
state refers to the current node that the AUV is traversal, and
the action corresponds to selecting the next node. After the
action, the AUV’s state changes to the selected node. The
reward of action is the negative value of the distance between
the starting node and the target node. A larger total reward
results in a shorter distance traveled by the AUV. The Q-value
table is updated based on the Bellman equation [18], i.e.,
Q(s, a) = Q(s, a) + α[r + γmax

a′
Q(s

′
, a

′
)−Q(s, a)]. (12)

The decision to select the next node is based on the
generation of a random number. If the random number is less
than Γ, a target node that has not been collected previously
is chosen randomly. Otherwise, the next target node chosen
will have the maximum Q-value from the current node to an
uncollected node. The details of the Q-learning-based node
traversal process are given in Algorithm 1.

B. SAC-Based Trajectory Planning Algorithm
The trajectory planning problem is challenging due to the

characteristic of high-dimensional, continuous, and online. To
solve this problem, we propose a SAC-based trajectory plan-
ning algorithm to online make continuous trajectory decisions.
The state, action space, and reward are given as follows.

Algorithm 1 Q-learning based node traversal algorithm.

1: Initialize Q-values (Q(s, a)) arbitrarily;
2: for episode< E do
3: while All nodes are not fully traversed do
4: for each AUV do
5: if RandomNum< Γ then
6: Randomly select a node as the destination node

of the nodes that have not been collected;
7: else
8: Select the node with the largest Q value in the

Q value table as the destination node;
9: Update status s

′
and calculate rewards r;

10: Update Q(s, a) by following Eq. (12);
11: end if
12: if Different AUVs choose the same destination

node then
13: The AUV with a low Q value reselects the

destination node;
14: end if
15: end for
16: end while
17: end for

1) State Space: In addition to collecting information from
each sensor node, AUVs need to achieve automatic obstacle
avoidance in UCDNs. The state space of this system mainly
consists of three parts: AUV’s own state, the position of
the traversal node, and the obstacle-related state. The AUV’s
own state includes the current position of the AUV An, i.e.,
[xn,t, yn,t]

T and the communication connection index On,t.
At the time t, when AUV An is within the controller’s
communication range, On,t = 1, and On,t = 0, otherwise. The
position of the traversal node is [x

′

n,t, y
′

n,t]
T . The obstacle-

related state contains the obstacle existence index Wn,t for
AUV An, the collision index Dn(t), and the distance do

and the motion angle ρo between AUV and obstacle. Finally,
the state space sn,t of AUV An at time t can be given by
[On,t, xn,t, yn,t, x

′

n,t, y
′

n,t,Wn,t, Dn(t), d
o
n,t, ρ

o
n,t].

2) Action Space: The action of AUV can be determined by
the velocities, which can be defined as an,t = [vxn,t, v

y
n,t].

3) Reward: The reward consists of rewards for avoiding
obstacles and approaching the traversal node. In addition, the
penalty consists of the collision penalty, the disconnection
penalty, and the timeout penalty. The reward for avoiding
obstacles which is denoted by ron,t = Wn,tωo(don,t + ρon,t).
where ωo is a fixed value, don,t and ρon,t is the normalized value
of don,t and ρon,t. The reward for approaching the traversal node
S is the normalized value of the reduction in the distance
between the AUV and the traversal node. If there are no
obstacles, the weight for it is 1. Otherwise, the weight is
1−ωo, which is denoted by ran,t = (1−Wn,tωo)(∆d(An, S)).
The collision penalty p1n,t is 1 while Dn(t) = +∞. The
disconnection penalty p2n,t is 1 while On,t = 0. The timeout
penalty p3n,t is 1 while t > tmax. Finally, the reward for AUV
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Algorithm 2 SAC-based trajectory planning algorithm.

1: Initialize πn(sn,t|µn) and Qn(sn,t, an,t|θn);
2: And initialize πn′

(sn,t|µn′
) and Qn′

(sn,t, an,t|θn
′
);

3: for step < Kn do
4: Conduct Algorithm 1;
5: for episode < E do
6: for t < T do
7: AUV An executes an,t by following πn(sn,t|µn)

and gets reward rn,t;
8: Update new state sn,t+1;
9: Store (sn,t, an,t, rn,t, sn,t) in experience replay

buffer and set sn,t ← sn,t+1;
10: Get M random samples (sn,t, an,t, rn,t, sn,t) in

experience and set target value yn,t by (14);
11: Use gradient descent to update actor-network and

critic-network based on (15) and (13);
12: Update target critic and actor-network;
13: end for
14: end for
15: end for

An is calculated by rn,t = rc + ron,t − ωp(p
1
n,t + p2n,t + p3n,t),

where wp is the weight value for the penalty.
4) Training and Testing: This system employs the SAC al-

gorithm where each AUV corresponds to four neural networks:
actor network, target actor network, critic network, and target
critic network. As this network is designed based on the pro-
posed UCDNs, the controller can obtain relevant information
on all AUVs in the cluster. Therefore, the neural networks of
each AUV are loaded on the controller, each controller can
iteratively update neural networks based on the information
of all AUVs [19]. This architecture is known as centralized
training decentralized execution (CTDE) architecture [20].

For AUV An, the algorithm is presented in detail as follows.
Firstly, initialize the actor network πn(·), target actor network
πn′

(·), critic network Qn(·), target critic network Qn′
(·), and

their corresponding parameters µn, µn′
, θn, and θn

′
. Set the

initial values of µn′
and θn

′
to the values of µn and θn,

respectively. For each step, the Q-table trained by Algorithm 1
is used to determine the target node. Then, the actor network of
AUV An makes a decision on the action an,t = πn(sn,t|µn)
based on the state sn,t. This results in a corresponding reward
rn,t and an updated state sn,t+1. The (sn,t, an,t, rn,t, sn,t+1)
tuple is stored in the experience replay buffer. For every
iteration of the neural network parameter update, M tuples
are randomly sampled from the experience replay buffer to
run the gradient descent algorithm.

The loss function for the critic network Qn(·) used in the
gradient descent is defined as

L(θn) =
1

M

M∑
j=1

(yn,j −Qn(sn,j , an,j |µn))2

2
. (13)

Here, ynj is the output of AUV An’s target critic network
combined with the reward, which is denoted by
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Fig. 3: An example of collaborative data collection.
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Fig. 4: Comparison of algorithm performance.

yn,j =rj +Qn′
(sn,j+1, an,j+1|θn

′
)

− ε log(πn′
(an,j+1|sn,t;µn′

)).
(14)

The loss function for the actor network πn(·) used in the
gradient descent is defined as

L(µn) =E[ε log(πn(an,j+1|sn,t;µn)]

−Qn(sn,j , an,j |θn),
(15)

where ε is the ratio parameter.
The parameters for the target actor network πn′

(·) and target
critic network Qn′

(·) are updated by µn′
= σµn+(1−σµn′

)
and θn

′
= σθn + (1 − σθn

′
), where σ is the ratio hyper-

parameter. The details of the SAC-based trajectory planning
are given in Algorithm 2.

V. PERFORMANCE EVALUATION

A. Simulation Setup

In the simulation, 25 sensor nodes are randomly distributed,
and 20 obstacles are randomly located in the area of 1,500 m
by 1,500 m. Four AUVs jointly perform the data collection
task. The power of moving, detection, communication, and
UCD signal is set to 100 W, 30 W, 5 W, and 30 W, respec-
tively. The obstacle warning distance dw is 100 m.

B. Simulation Results

As shown in Fig. 3, the trajectory of the AUVs completing
the data collection task is illustrated. As depicted in Fig. 3(a),
the node traversal trajectory is generated based on the Q-
learning algorithm. When the proposed SAC-based trajectory
planning algorithm is employed, AUVs can complete their data
collection tasks while avoiding obstacles as shown in Fig. 3(b).

As shown in Fig. 4, we present the performance comparison
among the proposed Q-learning algorithm, genetic algorithm
(GA), and ant colony optimization (ACO) in solving the node
traversal problem. From Fig. 4(a), it can be seen that, as

wuwenustc
Pencil

wuwenustc
Highlight

wuwenustc
Sticky Note
可以吧算法的字体减小，节省空间

wuwenustc
Highlight
一般和=对齐

wuwenustc
Highlight

wuwenustc
Highlight
建议定一个符号，这是一个文字

wuwenustc
Highlight



1 5 9 13 17 21 25

Number of nodes collected

0

2000

4000

6000

8000

10000

12000

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J) Proposed UCDNs

Traditional UACNs

Fig. 5: Comparison of energy consumption.
compared to traditional heuristic algorithms, the proposed Q-
learning is less likely to get trapped in locally optimal solu-
tions, thus shortening the trajectory lengths. As shown in Fig.
4(b), we present a comparison of the results between the SAC-
based algorithm with different parameter settings and the deep
Q-network (DQN) algorithm in solving the trajectory planning
problem. It can be seen that, if the amount of action entropy
is too high, convergence is slower, and if the amount is too
low, the exploration process is too short and the convergence
is too fast, resulting in suboptimal trajectory planning. When
SAC algorithm is properly configured, the convergence speed
and the sum of the reward of the proposed algorithm perform
30% and 15% better than that of the DQN based algorithm.

As shown in Fig. 5, we compare the energy consumption
of UCDNs and that of traditional UACNs. From Fig. 5, the
energy consumption of the proposed UCDNs is 14.6% higher
than that of the traditional UACNs. Different from the tradi-
tional UACNs, the transmission of detection and communica-
tion packets are integrated together to save energy in UCDNs.
In addition, operations that require advanced processors, such
as motion decisions and detection calculations, are offloaded
to the controller. AUV only needs simple processors and inte-
grated modules for detection and communication. Therefore,
the energy consumption of AUVs in UCDNs can be reduced.

VI. CONCLUSION

In this paper, we have investigated the multi-AUV collabo-
rative data collection problem in UCDNs. We have formulated
the collaborative data collection problem as a mixed com-
binatorial and sequential quadratic optimization problem to
minimize the trajectory length, which is solved by Q-learning
and SAC algorithms to traverse all sensor nodes while avoiding
obstacles. Simulation results show that the proposed scheme
can achieve lower energy consumption, faster convergence
speed, and shorter AUV trajectory length. For future work,
we aim to jointly optimize the AUV trajectory planning and
packet transmission scheme.
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