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Abstract—In this paper, we study a network slicing problem
for edge-cloud orchestrated vehicular networks, in which the edge
and cloud servers are orchestrated to process computation tasks
for reducing network slicing cost while satisfying the quality of
service requirements. We propose a two-stage network slicing
framework, which consists of 1) network planning stage in the
large timescale to perform slice deployment, edge resource provi-
sioning, and cloud resource provisioning, and 2) network operation
stage in the small timescale to perform resource allocation and
task dispatching. Particularly, we formulate the network slicing
problem as a two-timescale stochastic optimization problem to
minimize the network slicing cost. Since the problem is NP-hard,
we develop a Two timescAle netWork Slicing (TAWS) algorithm
by collaboratively integrating reinforcement learning (RL) and
optimization methods, which can jointly make network planning
and operation decisions. Specifically, by leveraging the timescale
separation property of decisions, we decouple the problem into
a large-timescale network planning subproblem and a small-
timescale network operation subproblem. The former is solved
by an RL method, and the latter is solved by an optimization
method. Simulation results based on real-world vehicle traffic
traces show that the TAWS can effectively reduce the network
slicing cost as compared to benchmark schemes.

I. INTRODUCTION

To make autonomous driving from a mere vision to reality,
future vehicular networks are required to support various
Internet of vehicles (IoV) services, such as object detection,
in-vehicle infotainment, and safety message dissemination [1].
Those IoV services have diversified quality of service (QoS)
requirements in terms of delay, throughput, reliability, etc.
Emerging network slicing is deemed as a de-facto solution
to support diversified IoV services in vehicular networks.
Its basic idea is to construct multiple isolated logical sub-
networks (i.e., slices) for different services on top of the
physical network, thereby facilitating flexible, agile, and cost-
effective service provision. Starting from the fifth-generation
(5G) era, standardization efforts from the 3rd generation
partnership project (3GPP) body, e.g., Releases 15-17 [2]–[4],
and proof-of-concept systems, e.g., Orion [5], have fuelled the
widespread of network slicing. In the coming 6G era, advanced
network slicing techniques are expected to play an increasingly
important role [6], [7].

In the literature, significant research efforts have been
devoted to network slicing. Ye et al. investigated a radio
spectrum resource slicing problem, in which radio spectrum
is sliced between macro base stations (MBSs) and small BSs
(SBSs) [8]. To achieve efficient resource allocation, a deep
learning-based algorithm was proposed to jointly allocate radio
spectrum and transmit power in a slicing-based network [9].
The previous work in [10] considered the resource provision-
ing problem and proposed a constrained learning algorithm to
solve it. However, this work differs from the existing works
in several important aspects. Firstly, the existing works focus
on utilizing resources on the network edge, low-cost cloud
resources are yet to be considered. As a remedy, a certain
amount of computation tasks processed at congested BSs
can be dispatched to the remote cloud, i.e., task dispatching,
such that network slicing cost can be reduced. Secondly,
network slicing includes two stages: 1) network planning
stage to provision network resources for slices in the large
timescale, and 2) network operation stage to allocate the
reserved resources to end users in the small timescale [3], [11].
The existing works mainly decouple network slicing into two
independent stages, while the interaction between these two
stages is seldom considered. Hence, designing a cost-effective
network slicing scheme should take cloud resources and such
interaction into consideration.

Optimizing network slicing performance in dynamic vehic-
ular networks faces the following challenges. Firstly, network
planning and operation decisions are nested. Large-timescale
network planning decisions (e.g., resource reservation), will
condition small-timescale network operation decisions (e.g.,
resource allocation). Meanwhile, the performance achieved
in the network operation stage will also affect the decision-
making in the network planning stage, which is difficult to
be solved by conventional optimization methods. Secondly,
since vehicle traffic density varies temporal-spatially, net-
work planning decisions need to be made to optimize long-
term performance in the slice lifecycle while accommodating
such network dynamics. Deep reinforcement learning (RL)
is considered as a plausible solution for long-term stochastic
optimization.

In this paper, we first propose a cost-effective two-stage
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network slicing framework for edge-cloud orchestrated vehic-
ular networks, by considering nested network planning and
operation stages and effectively leveraging cloud resources.
We then apply a network slicing cost model that accounts
for slice deployment, resource provision, slice configuration
adjustment, and QoS satisfaction. Based on the model, we
formulate the network slicing problem as a two-timescale
stochastic optimization problem to minimize the network
slicing cost. Second, to solve the problem, we develop a
learning-based algorithm, named Two timescAle netWork
Slicing (TAWS). The TAWS exploits the timescale separation
structure of decision variables and decouples the problem into
two subproblems in different timescales. Regarding the large-
timescale network planning subproblem, an RL algorithm is
designed to minimize network slicing cost via optimizing slice
deployment, edge resource provisioning, and cloud resource
provisioning. Regarding the small-timescale network operation
subproblem, an optimization algorithm is designed to mini-
mize average service delay via optimizing resource allocation
and task dispatching. In addition, the achieved service delay in
the network operation stage is incorporated into the reward of
the RL-based network planning algorithm, thereby capturing
interaction between two stages and enabling closed-loop net-
work control. Simulation results on real-world vehicle traces
demonstrate that the proposed algorithm outperforms existing
benchmarks in terms of reducing network slicing cost.

The remainder of this paper is organized as follows. The
system model and problem formulation are presented in Sec-
tions II and III, respectively. Section IV describes the proposed
TAWS algorithm. Simulation results are given in Section V,
along with the conclusion in Section VI.

II. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, the network slicing framework consists
of several components.

1) Physical network: A two-tier cellular network is deployed
for serving on-road vehicles. The set of BSs is denoted by
M, including the set of MBSs denoted by Mm and the set
of SBSs denoted byMs, i.e.,M =Mm∪Ms. Each BS has
a circular coverage and is equipped with an edge server. In
the considered scenario, vehicles driving on the road generate
computation tasks over time, which are offloaded to roadside
BSs. Those tasks can be either processed at edge servers or
dispatched to the remote cloud server via backbone networks.
Once completed, computation results are sent back to vehicles.

2) Network slice: Multiple network slices are constructed
on top of the physical vehicular network. We consider K
delay-sensitive services with differentiated delay requirements,
denoted by set K. Let θk,∀k ∈ K denote the tolerable delay
of service k. For example, the tolerable delay of objective
detection is 100 ms [12], whereas the tolerable delay of in-
vehicle infotainment can be several hundreds of milliseconds.

3) Network controller: A hierarchical network control archi-
tecture is adopted, including an upper-layer software defined
networking (SDN) controller that connects to all BSs, and
lower-layer local network controllers located at BSs. Those
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Fig. 1. Network slicing for edge-cloud orchestrated vehicular networks.

controllers are in charge of network information collection and
slicing decision making.

B. Two-Stage Network Slicing Framework

we present a two-stage network slicing framework for the
considered network. Firstly, a network planning stage operates
in the large timescale (referred to as planning windows) to
reserve resources at specific network nodes for the constructed
slices. The duration of each planning window is denoted by
Tp. At each planning window, the SDN controller collects the
average vehicle traffic density information in the considered
area, based on which planning decisions are made. Secondly,
the network operation stage operates in the small timescale
(referred to as a operation slots) to dynamically allocate
the reserved resources to according to real-time vehicles’
service requests and network conditions. The duration of each
operation slot is denoted by To. A planning window includes
multiple operation slots, i.e., Tp/To ∈ Z+. At each operation
slot, local network controller at each BS collects real-time
service requests and channel conditions of its associated vehi-
cles, based on which operation decisions are made. Decisions
in two stages are detailed as follows.

1) Network Planning Decision Structure: The planning
window is indexed by w ∈ W = {1, 2, ...,W}, and planning
decisions in each planning window w are as follows.

Slice deployment decision, denoted by ow ∈ RMs×1. Each
element is a binary variable, i.e.,

owm ∈ {0, 1},m ∈Ms. (1)

If SBS m is activated for slice deployment, we have owm = 1;
otherwise, owm = 0. When service demands are low, deploying
slices at a selective subset of BSs can reduce network slicing
cost as compared to deploying slices at all BSs while guaran-
teeing slices’ service level agreements (SLAs). This is because
running network slicing requires resource virtualization, which
incurs network operating costs. For service continuity consid-
eration, we assume that MBSs that cover the entire area are
always activated. Note that only when a BS is activated for
slice deployment, edge resources can be provisioned.

Edge resource provisioning decision, including radio spec-
trum and computing resource provisioning at all BSs for
all slices, denoted by Bw ∈ RK×M and Cw ∈ RK×M ,
respectively. The corresponding elements

{bwk,m, cwk,m} ∈ Z+,∀k ∈ K,m ∈M, (2)
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represent the number of subcarriers and edge virtual machine
(VM) instances provisioned for slice k at BS m, where Z+

denotes the set of positive integers.1 The bandwidth of a
subcarrier is β, and the computing capability of an edge VM
is Fe. Due to the limitation of edge resources, the following
capacity constraints are imposed:

owm
∑
k∈K

bwk,m ≤ Bm, owm
∑
k∈K

cwk,m ≤ Cm,∀m ∈M, (3)

where Bm and Cm represent the total number of subcarriers
and the total number of VM instances at BS m, respectively.

Cloud resource provisioning decision, denoted by hw ∈
RK×1. Each element

hwk ∈ Z+,∀k ∈ K (4)

denotes the number of cloud VM instances reserved for slice
k. The computing capability of a cloud VM is denoted by Fc.

2) Network Operation Decision Structure: Let t ∈ T =
{1, 2, ..., T} denote the index of operation slots in a planning
window. At each operation slot t, the following decisions are
determined for each slice k.

Radio spectrum allocation decision, denoted by ytk ∈
RNt×1. The reserved radio spectrum at each BS is allocated to
active vehicles within BS’s coverage for task offloading. Due
to vehicle mobility, the number of vehicles varies across time.
Let N t denote the set of active vehicles in operation slot t,
and N t = |N t|. For simplicity, each vehicle associates to the
nearest BS. LetN t

m denote the set of active vehicles associated
to BS m at operation slot t, and ytk,n ∈ R+ represents the
fraction of radio spectrum allocated to vehicle n. The total
amount of the allocated bandwidth should not exceed the
reserved number of subcarriers at each BS, yielding∑

n∈N tm

ytk,n ≤ bwk,m,∀m ∈Mw, (5)

where Mw denotes the set of activated BSs in window w.
Task dispatching decision, denoted by xtk ∈ ZMw×1. The

BS receives computation tasks uploaded from its associated
vehicles. The task arrivals of vehicles follow arbitrary stochas-
tic processes. Let atk,n denote the number of generated tasks of
vehicle n in operation slot t, and the aggregated computation
workload at BS m is given by Atk,m =

∑
n∈N tm

atk,n. Process-
ing all tasks at BSs with limited edge computing resources
may incur prohibitive high queuing delay, and hence a portion
of computation tasks can be dispatched to the remote cloud
via backbone networks. Let xtk,m represent the number of
dispatched tasks from BS m in slice k, i.e.,

xtk,m ∈ {0, 1, 2, ..., Atk,m},∀m ∈Mw. (6)

The operation decisions impact service delay at each oper-
ation slot, which is analyzed in the following subsection.

C. Service Delay Model

The service delay includes task offloading delay and task
processing delay at either the edge or the cloud. The following

1Memory resource is also allocated to the VM instance to enable task
processing, which is matched to its allocated computing resource.

analysis is for delay-sensitive service k.
1) Task offloading delay: The transmission rate of one

subcarrier from vehicle n to its associated BS is given by
Rtn = β log2

(
1 +

Pvg
t
n

βNo+βI

)
, where Pv , gtn, No, and I

represent vehicle’s transmission power, instantaneous channel
gain, noise spectrum density, and interference spectrum den-
sity, respectively. With the allocated radio spectrum ytk,nb

w
k,m,

task offloading delay of vehicle n is given by dtk,n,o =
ξk

ytk,nb
w
k,mR

t
n
,∀n ∈ N t

m, where ξk (in bits) denotes the task
data size of service k.

2) Edge processing delay: Given the task dispatching de-
cision, Atk,m − xtk,m tasks are processed at BS m. Let
Qtk,m (in bits) denote the amount of backlogged tasks at
BS m. Taking task computation delay and queuing delay
into account, edge processing delay at BS m is given by

dtk,m,e =
(Qtk,m+(Atk,m−x

t
k,m+1)ξk/2)ηk

cwk,mFe
,∀m ∈ Mw, where ηk

(in cycles/bit) denotes task computation intensity of service k,
and cwk,mFe is the computing capability of BS m with cwk,m
provisioned edge VMs. The task backlog at BS m is updated

by Qt+1
k,m =

[
Qtk,m + (Atk,m − xtk,m)ξk − cwk,mFeTo/ηk

]+
,

where [x]
+

= max {x, 0}.
3) Cloud computation delay: For BS m, xtk,m tasks are

dispatched via backbone networks and then processed at the
cloud, whose delay is given by dtk,m,c = dtr + ξkηk

hwk Fc
, where

dtr denotes the round trip time in the backbone network. The
second term represents the task processing delay in the cloud.
Note that queuing delay at the cloud is negligible as multi-core
cloud servers parallelly process tasks.

As such, the average delay for each computation task is

Dt
k(xtk,y

t
k) =

∑
m∈Mw

∑
n∈N tm

dtk,n,o∑
m∈Mw N t

m

+
∑

m∈Mw

dtk,m,e

(
Atk,m − xtk,m

)
+ dtk,m,cx

t
k,m∑

m∈Mw Atk,m
.

(7)

In the above equation, the first term represents the average
task offloading delay for each task, and the second term
represents the average task processing delay considering work-
load distribution between the edge and cloud. The service
delay averaging all operation slots is calculated by D̄w

k =
1
T

∑T
t=1D

t
k(xtk,y

t
k).

D. Network Slicing Cost Model
The network slicing cost includes several components.
1) Slice deployment cost: The cost is due to running network

slicing at BSs incurs the overhead of resource virtualization,
which is given by Φwd = qd

∑
m∈Ms

owm. Here, qd denotes the
unit cost of running network slicing at a BS.

2) Resource provisioning cost: The cost component char-
acterizes resource provisioning cost of edge radio spectrum
and computing resources, and cloud computing resources.
For simplicity, we assume the unit costs of a subcarrier, an
edge VM instance, and a cloud VM instance are the same,
denoted by qp > 0. The resource provisioning cost is given
by Φwp = qp

∑
k∈K

(
hwk +

∑
m∈M

(
owmb

w
k,m + owmc

w
k,m

))
.
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3) Slice adjustment cost: The cost component characterizes
the difference between two subsequent planning decisions, i.e.,
the cost for adjusting the amount of reserved spectrum and
computing resources. For computing resources, VM instances
can be resized according to service demands via advanced
virtualization techniques in practical systems, such as Docker
and Kubernetes [13]. Here, qs represents the unit price of
adjusting a unit of reserved network resources. Hence, the slice
adjustment cost is given by

Φws = qs1
{
ow−1
k,m = 1 ∧ owk,m = 1

}
·
∑
k∈K

([
hwk − hw−1

k

]+
+
∑
m∈M

([
bwk,m − bw−1

k,m

]+
+
[
cwk,m − cw−1

k,m

]+))
,

(8)

where 1 {·} is an indicator function and
1

{
ow−1
k,m = 1 ∧ owk,m = 1

}
indicates that slices are deployed

in both the previous and current planning windows.
4) SLA revenue: The cost component characterizes benefit

caused by QoS satisfaction, i.e., the achieved service delay of
each slice. The piece-wise revenue function is represented by

Ωk (D) =


qr, if D < θ

′

k,

qr

(
D−θ

′
k

θk−θ
′
k

)
, if θ

′

k ≤ D ≤ θk,

−qp, if D > θk,

(9)

where qr > 0 is the unit revenue once a slice’s SLA is satisfied,
and qp > 0 is the unit penalty once the slice’s SLA is violated.
Obviously, qp > qr for discouraging slice’s SLA violation.
In addition, θ

′

k < θk represents the threshold achieving the
highest revenue. For simplicity, we set θ

′

k = θk/2 in the
simulation. The overall SLA revenue of all slices is given by
Φwq =

∑
k∈K Ωk

(
D̄w
k

)
.

Taking all cost components into account, the overall network
slicing cost in the entire slice lifecycle (i.e., all planning win-
dows) is given by Φ (ow,Bw,Cw,hw, {xtk,ytk}t∈T ,k∈K) =∑
w∈W

(
Φwd + Φwp + Φws − Φwq

)
, which is adopted to metric

network slicing performance.

III. PROBLEM FORMULATION

The network slicing problem aims to minimize the network
slicing cost via determining network planning decisions at
each planning window and network operation decisions at each
operation slot for each slice, which is formulated as:

P0 : min
{ow,Bw,Cw,hw}w∈W
{xtk,y

t
k}t∈T ,k∈K,w∈W

∑
w∈W

Φ (ow,Bw,Cw,hw)

s.t. (1), (2), (3), (4), (5), and (6). (10a)

In Problem P0, the network planning and operation decision
making are coupled in two timescales, which should be jointly
optimized. To address the challenge, we first decouple the
problem into a large-timescale network planning subproblem
and multiple small-timescale network operation subproblems.

Subproblem 1: Network planning subproblem is to mini-
mize the network slicing cost across all the planning windows,

which is formulated as:

P1 : min
{ow,Bw,

Cw,hw}w∈W

∑
w∈W

Φ (ow,Bw,Cw,hw)

s.t. (1), (2), (3), and (4). (11a)

Addressing the above subproblem requires network traffic
information of all planning windows, which is difficult to
be known a priori. To solve it, we leverage an RL method
to design a network planning algorithm, which makes online
decisions under spatial-temporally varying vehicle traffic.

Subproblem 2: Network operation subproblem is to sched-
ule network resources of each slice to active vehicles with
random task arrivals with the objective of minimizing average
service delay, which is formulated as:

P2 : min
xtk,y

t
k

Dt
k(xtk,y

t
k)

s.t. (5) and (6). (12a)

In the above subproblem, radio spectrum resource allocation
and task dispatching decisions jointly impact the service
delay performance. To solve the problem, we analyze the
subproblem property and design an optimization algorithm to
make real-time network operation decisions.

IV. LEARNING-BASED NETWORK SLICING ALGORITHM

In this section, we solve two subproblems in Sections IV-A
and IV-B, respectively. Finally, we present the TWAS algo-
rithm for jointly optimizing planning and operation decisions
in Section IV-C.

A. Network Operation Optimization

We can observe that the radio spectrum allocation de-
cision only impacts offloading delay component, and the
task dispatching decision only impacts the computation delay
component. Moreover, both decisions are independent in each
BS. Hence, the radio spectrum allocation and task dispatching
decisions can be optimized individually at each BS.

1) Radio Spectrum Allocation Optimization: From (7), the
radio spectrum allocation optimization problem is equivalent
to minimizing the task offloading delay at each BS, i.e.,

Prm : min
ytk

∑
n∈N tm

ξk
ytk,nb

w
k,mR

t
n

s.t. (5). (13a)

The objective function can be proved to be convex since its
second-order derivative is positive. In addition, the constraint
is convex. Hence, problem Prm is a convex optimization
problem. Using the Karush-Kuhn-Tucker conditions [14], the
optimal radio spectrum resource allocation decision is

(ytk,n)? =

√
1/Rtn∑

i∈N tm

√
1/Rti

,∀n ∈ N t
m. (14)

2) Task Dispatching Optimization: Similarly, from (7), task
dispatching optimization is to minimize the task processing
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delay, which is formulated as:

Pwm : min
xtk,m

dtk,m,e
(
Atk,m − xtk,m

)
+ dtk,m,cx

t
k,m

s.t. (6). (15a)

The above objective function can be rewritten as

Ψ(xtk,m) = dtk,m,e
(
Atk,m − xtk,m

)
+ dtk,m,cx

t
k,m

=
ν1ξk

2
(xtk,m)2 +

(
νt2 − ν1ν3 −

ξkAk,mν1

2

)
xtk,m

+ ν1ν
t
3A

t
k,m.

(16)

Here, ν1 = ηk
cwk,mFe

> 0, νt2 = dtr + ηkξk
hwk Fc

, and ν3 =

Qk,m +
Ak,m+1

2 ξk. Since the second-order derivative of the
objective function ∂2Ψ(xtk,m)/∂2xtk,m = νt1ξk > 0, the
problem is a convex optimization problem [14]. The optimal
task dispatching decision is given by

(xtk,m)? =
2νt2 + ξkν1Ak,m − 2ν1ν

t
3

2ν1ξk
,∀m ∈Mw. (17)

B. Network Planing Optimization

The network planning problem is a stochastic optimization
problem to minimize the network slicing cost, which can be
transformed into a Markov decision process (MDP) [10]. The
components of the MDP are defined as follows.

1) Action, which is consistent with planning decisions,
including slice deployment, edge radio spectrum and com-
puting resource provisioning at BSs, and cloud computing
resource provisioning, i.e., Aw = {ow,Bw,Cw,hw}. The
action dimension is Ms + 2KM +K.

2) State, which includes average vehicle traffic density in
the current planning window and the planning decisions in the
previous window due to the switching cost. The entire area is
divided into J disjoint regions, and the average vehicle traffic
density of all regions is denoted by Λw ∈ RJ×1. As such, the
state is given by Sw = {Λw,ow−1,Bw−1,Cw−1,hw−1}. The
state dimension is 2KM +M +K + J .

3) Reward, which is defined as the inverse of the net-
work slicing cost in the current planning window, i.e.,
Rw (Sw, Aw) = −Φ (ow,Bw,Cw,hw) . Note that minimiz-
ing the network slicing cost is equivalent to maximizing the
cumulative reward.

Upon state Sw, the learning agent takes action Aw, and the
corresponding reward Rw (Sw, Aw) is obtained, along with
the state evolves into new state Sw+1. With the above setting,
our goal is to obtain an optimal planning policy π? ∈ Π
which makes decisions based on the observed state, thereby
maximizing the expected long-term cumulative reward. As
such, problem P2 can be formulated as the following MDP:

P′2 : max
π∈Π

E

[
lim

W→∞

W∑
w=1

(ϕ)wRw (Sw, Aw) |π

]
, (18a)

where ϕ > 0 is the discount factor. Since vehicle traffic density
is continuous, the action-state space can be prohibitively large.
To address this issue, an RL algorithm can be adopted.

Algorithm 1: TAWS algorithm.
1 for training episode =1, 2, ... do
2 for planning window w = 1, 2, ...,W do
3 Generate planning decisions via actor network;
4 for each slice in parallel do
5 for operation slot t = 1, 2, ..., T do
6 for each BS in parallel do
7 Make radio spectrum allocation and task

dispatching decisions by (14) and (17);
8 Calculate instantaneous service delay;
9 Measure average service delay within the

planning window;
10 Collect vehicle traffic density of all regions, and

observe reward Rw and new state Sw+1;
11 Store transition {Sw, Aw, Rw, Sw+1} in the

experience replay buffer;
12 Sample a random minibatch transitions from the

experience replay buffer;
13 Update weights of neural networks;

C. Proposed TAWS Algorithm

We present the TAWS algorithm to jointly solve the en-
tire network slicing problem P0, collaboratively integrating
RL [15] and optimization methods. The core idea of TAWS is
to adopt an RL method for network planning decision making
and an optimization method for network operation decision
making. The service delay performance is measured at the
end of each planning window and then incorporated into the
reward in the RL framework, such that the interaction between
network planning and operation stages can be captured. The
TAWS algorithm is shown in Algorithm 1.

The RL method is based on the deep deterministic policy
gradient (DDPG) algorithm [16], which consists of four neu-
ral networks, i.e., actor evaluation network, critic evaluation
network, actor target network, and critic target network. In the
initialization phase, all neural networks and the environment
is initialized. The procedure of the TAWS is two-step: 1) Net-
work slicing decisions are generated and executed. The actor
network outputs the planning decisions Aw, which is clipped
to feasible decision space. The network operation decisions
are generated via the optimization method, and the service
delay performance is measured at the end of each planning
window. The reward Rw can be obtained and the new state can
be observed Sw+1. The transition tuple {Sw, Aw, Rw, Sw+1}
is stored in the experience replay buffer for updating neural
networks; and 2) Neural networks are updated. A mini-batch of
transitions are randomly sampled from the experience replay
buffer to update the weights of neural networks. Based on
which, the critic network is updated by minimizing the loss
function. The actor network is updated via policy gradient.
Then, actor and critic target networks are updated by slowly
copying the weights of evaluation networks.

V. SIMULATION RESULTS

We evaluate the performance of the proposed algorithm on
real-world vehicle traffic traces in urban vehicular networks.
We consider a 1,000×1,000 m2 simulation area, which is
covered by two SBSs and an MBS. Each SBS has a coverage
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Table I
SIMULATION PARAMETERS.

Parameter Value Parameter Value
No −174 dBm I −164 dBm
Pv 27 dBm β 20 MHz
dr 0.15 sec J 16
To 1 sec Tp 10 min
Fc 100 GHz Fe 10 GHz
Bm 10 Cm 10
ξ1, ξ2 {0.6, 2} Mbit η1, η2 {1000, 200} cycles/bit

θ1, θ2 {100, 200} ms θ
′
1, θ
′
2 {50, 100} ms

qp 1 qn 10
qs 5 qp 200
qr 10
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Fig. 2. Performance of the proposed TWAS algorithm.

radius of 300 m, and the MBS located in the centre can cover
the entire area. The vehicle traffic density of the simulation
area is measured by a unit of a small region of 250×250 m2,
i.e., J = 16. This dataset is collected by Didi Chuxing GAIA
Initiative2 and contains vehicle traces in the second ring road
in Xi’an collected from taxis that are equipped with GPS
devices. The periods of a planning window and an operation
slot are set to 10 minutes and 1 second, respectively. The
period of the slice lifecycle is set to 4 hours, including 24
planning windows. The task arrivals follow a Poisson process.
We construct two slices for supporting two types of delay-
sensitive services. One is an object detect service whose
service delay requirement is 100 ms, while the other is an in-
vehicle infotainment service whose service delay requirement
is 200 ms. Regarding the TWAS algorithm, the learning rates
of actor and critic networks are set to 5×10−4 and 5×10−3,
respectively. The neuron units in hidden layers of both actor
and critic networks are set to 128 and 64. Important simulation
parameters are summarized in Table I.

As shown in Fig. 2(a), we present the overall network slicing
cost with respect to training episodes. All simulation points are
processed by a five-point moving average in order to highlight
the convergence trend of the proposed solution. It can be
seen that the learning-based algorithm has converged after 500
training episodes.

As shown in Fig. 2(b), we compare the performance of
the proposed learning-based planning policy and a short term
optimization benchmark. The benchmark is to minimize the
network slicing cost at each planning window. Since planning
decisions are discrete, a simple exhaustive searching method
is adopted to obtain the optimal one-shot planning decisions.
Firstly, it can be seen that the proposed algorithm can greatly
reduce the network slicing cost as compared to the benchmark.
Specifically, when the task arrival rate is 2 packets per second,
the proposed solution can reduce the overall network slicing
cost by 23%. The reason is that the proposed solution takes
the switching cost between two consequent planning windows
into account, while the benchmark scheme does not. Secondly,

2Didi Chuxing Dataset: https://gaia.didichuxing.com.

the overall network slicing cost increases with the increase of
the task arrival rate because more spectrum and computing
resources are consumed in a heavy traffic scenario.

VI. CONCLUSION

In this paper, we have investigated a network slicing prob-
lem in edge-cloud orchestrated vehicular networks. A two-
stage network slicing algorithm, named TWAS, is proposed to
jointly make network planning and operation decisions in an
online fashion. It can adapt to network dynamics in different
timescales, including spatial-temporally varying vehicle traffic
density and random task arrivals. Simulation results have
demonstrated that the TAWS can reduce the network slicing
cost as compared to benchmarks. For future work, we aim to
determine the optimal planning window size for minimizing
the network slicing cost under vehicular network dynamics.
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