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Abstract—We propose a digital twin-assisted adaptive preload-
ing scheme to reduce bandwidth waste as well as enhance user
quality of experience (QoE) for short video streaming. Though
preloading video content can reduce rebuffering and improve
user QoE, non-sequential playback of short videos induced by
user swipe can result in substantial bandwidth wastage in mobile
networks. To tackle this problem, we first model the short video
streaming system and carry out preloading threshold analysis.
We then construct a digital twin-assisted adaptive preloading
framework for short video streaming. By collecting and analyzing
the user’s historical throughput and tracking swipe timing
information, a throughput prediction model and a probabilistic
model can be constructed to accurately predict future throughput
and user swipe behavior, respectively. Utilizing the predicted
information and real-time running status data from a short
video application, we design a preloading strategy to enhance
bandwidth efficiency while achieving high user QoE. Simulation
results demonstrate the effectiveness of our proposed scheme
compared with the state-of-the-art schemes.

I. INTRODUCTION

Nowadays, video streaming occupies around 70% of total
mobile data traffic, which is expected to reach 80% by 2028.1

In recent years, short video platforms, e.g., TikTok, YouTube
Shorts, and Instagram Reels, have become phenomenal appli-
cations [1]. The total number of short video users worldwide
has exceeded one billion in 2022 [2].

In short video streaming, users can swipe the screen to
skip from the current video to the next one in the video
recommendation list, allowing them to easily search for their
interested videos. Due to channel condition fluctuations in
wireless networks [3], it is crucial to preload video content
on mobile devices to facilitate smooth playback and avoid
rebuffering. Considering the user’s swipe behavior in short
video streaming, it is imperative to preload both the current
video and the following ones in the recommended list, which
can effectively reduce rebuffering during video playback.
However, some preloaded video content may be unwatched
and discarded due to users’ frequent video swipes, resulting
in significant bandwidth waste [2]. Recent studies indicate
that only 30.92% of videos are watched in their entirety [4].
Moreover, nearly 45% of the downloaded video is ultimately
discarded [5]. Such bandwidth waste not only escalates the

1https://www.ericsson.com/en/reports-and-papers/mobility-
report/dataforecasts/mobile-traffic-forecast

cost of mobile data traffic for users but also incurs operational
expenses for short video service providers [2]. Consequently,
an adaptive preloading scheme is essential for short video
streaming, aiming to reduce bandwidth waste while enhancing
user quality of experience (QoE).

Recent works have studied short video preloading to achieve
the aforementioned objective. Nguyen et al. considered the
network throughput condition and then dynamically adjusted
buffer sizes for the current video and the following ones in
the video recommendation list [5]. Zhang et al. presented a
novel preloading mechanism that dynamically preloads the
recommended videos to maximize playback smoothness and
minimize bandwidth waste [6]. However, these works do
not fully consider the impact of varying bitrates on system
performance. Zhou et al. introduced a probabilistic model of
user retention to adaptively control the buffer size for reducing
bandwidth waste [7]. Zhang et al. proposed a learning-based
approach to capture the characteristics of past network condi-
tions and train adaption models for reducing data usage [2].
Nevertheless, these works may not fully exploit user-specific
information for buffer control and bitrate adaptation.

To leverage user-specific information and enhance the per-
formance of short video streaming, we introduce the promising
digital twin (DT) technology [8], [9]. DT is a virtual represen-
tation of a physical entity that enables real-time synchroniza-
tion between the digital model and the actual entity [10]. By
applying DT technology in the short video streaming scenario,
we can create a virtual representation of a user, capturing
his/her throughput traces and swipe preferences. Analysis of
this user-specific historical and real-time data facilitates more
precise traffic and swipe predictions for buffer control and bi-
trate adaptation, thereby effectively reducing bandwidth waste
while ensuring high user QoE. Consequently, it is worthwhile
to explore a DT-based solution by dynamically adjusting the
preloading strategy, tailored to the user’s characteristics and
real-time network conditions.

In this paper, we propose a DT-assisted adaptive preload-
ing framework for short video streaming, aiming to reduce
bandwidth waste and enhance user QoE. We first model the
short video streaming system and analyze the relationship
between the achievable throughput and the encoding bitrate
of a short video. Then, we introduce a DT framework for
short video streaming, consisting of four functional blocks:



data pool, throughput prediction, user swipe prediction, and
preloading strategy. In particular, the user behavior prediction
block constructs a probabilistic model based on historical
video swipe information to predict the user’s viewing behavior.
More importantly, the preloading strategy block is responsible
for making effective preloading decisions via the designed
algorithms, including adaptively adjusting buffer sizes for the
current video and the ones in the video recommendation list
and selecting the bitrates for the upcoming video contents.
Extensive simulation results demonstrate the effectiveness of
our solution in reducing bandwidth waste and enhancing user
QoE, outperforming the state-of-the-art schemes.

The main contributions of this paper are summarized as
follows:
• We propose a DT framework for short video streaming,

which establishes a throughput model and a probabilistic
model to predict the user’s future throughput and video
swipe event, respectively.

• We design an adaptive short video preloading strategy,
which can dynamically adjust the buffer threshold and
adaptively select the bitrates for the current video and
the next ones in the video recommendation list.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the scenario in which multiple users watch
videos through short video applications over mobile networks.
The users’ digital twins (UDTs) are constructed and stored
in the edge server which is collected to the base station.
A general short-form video streaming system is depicted in
Fig. 1. In this system, a user initiates video requests directed
toward a content delivery network (CDN) server, which serves
as a repository for short videos. Each video transmitted to
the user’s device is segmented into small chunks, featuring
consistent playback duration but varying bitrate levels. In
addition to the current video being played, the videos in the
recommendation queue can also be preloaded. Upon receipt
of video chunks from the CDN server, the user’s device
stores them in its buffer. When watching a video, the user
can swipe away the current video to the next video in the
recommendation queue. To ensure a satisfactory QoE, the user
can decide which chunk to preload as well as its bitrate to
accommodate the fluctuating network conditions and random
user swipe timing.

A. Short Video Streaming Model

We consider a viewing session that starts when a user opens
the short video application and ends when the user closes the
application. During the viewing session, the user watches a
list of short videos V = {V1, V2, ..., VN} recommended by the
CDN server in sequential order. Video Vi is divided by Ki

chunks with an identical duration T0. Each chunk is encoded
by different bitrate levels. The short video player can download
chunk vi,k encoded by bitrate ri,k ∈ R, where R denotes the
set of all available bitrates.

The video chunks are downloaded into a playback buffer,
which stores the downloaded but unwatched video content. To
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Fig. 1. Overview of a short video streaming system.

ensure smooth playback, the preloaded video content contains
the current video and the subsequent videos in the recom-
mended list. Let B(t) ∈ [0, Bmax] be the buffer occupancy at
time t, i.e., the play time of the video chunks left in the buffer.
The buffer size Bmax depends on the service provider, as well
as the player. Let Bi(t) ∈ [0, Bth

i ] be the buffer occupancy
for video Vi at time t, which is the play time of the video
left in the buffer. The buffer threshold Bth

i for video Vi is
determined by the policy of the player. The buffer occupancy
B(t) evolves as the chunks are downloaded, and the videos are
played. Thus, we have B(t) =

∑Np

i=ic
Bi(t), where ic is the

current video index, and Np denotes the maximum number
of videos that have preloaded chunks at time t. Here, we
assume that the preloaded chunks for the current video will be
discarded once swiping to the next one. Let Bi,k = Bi(ti,k)
denote the buffer occupancy for video Vi when the player starts
to download chunk vi,k. If the player immediately starts to
download chunk vi,k+1 as soon as chunk vi,k is downloaded,
the buffer dynamics can then be formulated as

Bi,k+1 = max{Bi,k −
ri,kT0
Ci,k

, 0}+ T0, (1)

where Ci,k is the average download speed during downloading
chunk vi,k. Let C(t) denote the network throughput at time t.
Then, we have

Ci,k =
1

ti,k+1 − ti,k

∫ ti,k+1

ti,k

C(t)dt. (2)

B. Problem Formulation

As discussed in [1], user QoE is mainly determined by the
video bitrate, the bitrate variation, and the rebuffering delay.
We define the QoE of video Vi by a weighted sum of the
aforementioned factors

QoEi = ω1 ·
Ks

i∑
k=1

ri,k − ω2 ·
Ks

i−1∑
k=1

|ri,k+1 − ri,k|

− ω3 ·
Ks

i∑
k=1

max{ri,kT0
Ci,k

−Bi,k, 0}, (3)

where Ks
i denotes the number of watched chunks of video

Vi before swiping the video; ω1, ω2, and ω3 are non-negative
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weighting parameters related to the video bitrate, bitrate vari-
ations, and the rebuffering time, respectively. Considering that
users may prioritize different factors, the weighting parameters
can be customized based on their individual preferences.

The bandwidth consumed by downloading video Vi is

BWi =

Ks
i +Bs

i /T0∑
k=1

ri,k · T0, (4)

where Bs
i denotes the buffer occupancy for video Vi when

swiping to video Vi+1. Then, the bandwidth waste caused by
video swipes can be formulated as

BWw =

N∑
i

Bs
i /T0∑

k=Ks
i +1

ri,k · T0. (5)

To balance the impacts of bandwidth usage and user QoE on
the system performance, we define a utility function U , which
is given by

U =

N∑
i

(QoEi − ω4 ·BWi), (6)

where ω4 denotes the weighting parameter related to the
bandwidth usage. To minimize the bandwidth usage while
improving the user QoE, we formulate the following problem

max
Bth

i ,ri,k
U (7)

s.t. Bi,k ∈ [0, Bth
i ], Bth

i ∈ (0, Bmax), (7a)
ri,k ∈ R. (7b)

The ultimate goal of this paper is to reduce bandwidth
usage and improve the user QoE concurrently. According to
Eq. (4), the bandwidth usage is closely related to the buffer
occupancy when swiping video. Since the buffer occupancy
is limited by the buffer threshold, a smaller buffer threshold
can significantly reduce the bandwidth usage. However, Eq.
(3) shows that the buffer occupancy can efficiently reduce
the rebuffering delay by handling the network scenario with
a period of low throughput. A larger buffer threshold can
effectively reduce the rebuffering delay. Therefore, the buffer
threshold setting plays a crucial role in improving the utility
function defined in Eq. (6), as well as the bitrate adaption
which has been investigated in many works [1], [7]. In the
face of the vagaries of network throughput and user swipe
timing, it is difficult to design an optimal strategy of real-time
buffer control and bitrate adaption.

C. Buffer Threshold Analysis

As shown in Eq. (3), the rebuffering delay for chunk vi,k
is denoted by max{ ri,kT0

Ci,k
− Bi,k, 0}, which illustrates that

the buffer occupancy is closely associated with the throughput

of downloading the chunk. Obviously, the optimal buffer
threshold for video Vi can be formulated as

argmin
Bth

i

BWi (8)

s.t. max{ri,kT0
Ci,k

−Bi,k, 0} = 0, (8a)

Bi,k ∈ [0, Bth
i ], Bth

i ∈ (0, Bmax). (8b)

It is easy to derive the optimal buffer threshold Bth∗
i , i.e.,

Bth∗
i =

ri,kT0

Cmin
, where Cmin denotes the minimum throughput

downloading any chunk in video Vi.
To find out the relationship between the network throughput

and the bitrate, we first consider a worst-case scenario where
a user continuously scrolls the screen to swipe the videos once
watching the first chunk. In this scenario, we assume that video
playback begins only when the number of buffered chunks
reaches an initial threshold denoted as B0, where B0 ≥ 1. To
prevent rebuffering events while watching the current video
or transitioning to the next video, it is necessary to download
the subsequent chunk of the current video and B0 chunks
of the next video while the user is viewing the first chunk.
Let Cworst

min represent the minimum achieved throughput that
can sufficiently handle this worst-case scenario. Consequently,
Cworst

min must satisfy the following equation

Cworst
min · T0 = ri,B0+1 · T0 +

B0∑
j=1

ri+1,j · T0. (9)

Thus, we have Cworst
min = ri,B0+1 +

∑B0

j=1 ri+1,j .
When the achievable throughput falls below the minimum

bitrate Rmin, a rebuffering event may occur. This implies
that the download rate is slower than the video’s playback
rate, resulting in the inability to ensure the smooth playback
of the current video. However, if the achievable throughput
satisfies C ∈ [Rmin, C

worst
min ], there is room for designing the

preloading strategy to prevent rebuffering events.

III. DIGITAL TWIN-ASSISTED ADAPTIVE PRELOADING
FRAMEWORK

In this section, we present a novel framework called Digital
Twin-Assisted Adaptive Preloading (DTAAP), which aims
to reduce bandwidth usage while improving user QoE. As
depicted in Figure 2, the DTAAP framework leverages the
user’s DT to generate a personalized preloading decision by
utilizing private user data. The DTAAP framework comprises
four functional blocks, i.e., data pool, throughput predic-
tion, user behavior prediction, and preloading strategy. The
Data pool block periodically collects and stores user data
related to throughput prediction, user behavior prediction, and
preloading decisions 2. Next, we will introduce the other three
functional blocks in detail.

2The data upload typically consumes only a few bytes per second on
average, exerting minimal impact on bandwidth usage. Moreover, we can
leverage the latest data protection techniques, such as homomorphic encryp-
tion, differential privacy, among others, to enhance user privacy [11].
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A. Throughput Prediction

Accurate throughput prediction is critical in making effec-
tive video preloading decisions. Short video applications are
often used in diverse wireless access scenarios, such as open-
air spaces, indoor locations, or on a moving bus. Each scenario
presents distinct throughput characteristics, as discussed in
[12]. Moreover, the dynamics of wireless channel and network
traffic load contribute to rapid fluctuations in a user’s achieved
throughput. Nevertheless, by utilizing the throughput traces
provided by the user, the user’s DT can effectively identify the
network environment using the technology proposed in [12].
Once the network scenario is determined, the next step is to
design a model that can predict future throughput accurately.
One challenge in predicting throughput is the rapid variation
experienced during the duration of playing a video chunk,
making it difficult to capture this characteristic. To address
this issue, we focus on predicting the average throughput
over chunk-level duration. Additionally, we can leverage buffer
control and bitrate adaptation techniques to mitigate the impact
of prediction error. Therefore, we use the following model
to predict future throughput Ĉ = α1 · Cave + α2 · Clast,
where Cave denotes the average throughput, Clast denotes the
throughput of downloading last chunk, α1 and α2 are two
weighting parameters.

B. User Behavior Prediction

Considering that videos within the same category may
have different durations, we use X pieces of user trace data
Trx(kx,Kx) to represent the scrolling behavior of the x-
th trace. Here, kx denotes the viewing chunk number when
swiping the video, and Kx represents the total number of
chunks in the video. To build a swiping ratio distribution
model with 1% resolution, we employ Algorithm 1. The
resulting probability distribution of the model is denoted by a
vector S. Using this model, we can determine the probability
of swiping the video at a specific chunk during playback. For

Algorithm 1 State transition model construction algorithm.
Input: User traces Trx(kx,Kx).
Output: The probability distribution vector S.

1: Initialize a vector S = [s1, s2, ..., s100];
2: for x in [1, X] do
3: if d 100(kx−1)

Kx
e 6= d 100kx

Kx
e then

4: for y in [d 100(kx−1)
Kx

e+ 1, d 100kx
Kx
e] do

5: S[y] = S[y] + 1

X(d 100kx
Kx

e−d 100(kx−1)
Kx

e)
;

6: end for
7: else
8: S[d 100kx

Kx
e] = S[d 100kx

Kx
e] + 1/X;

9: end if
10: end for
11: return S;

instance, for a video i consisting of Ki chunks, the probability
of swiping the video at chunk vi,k can be calculated by

pi,k =

d 100kKi
e∑

j=d 100(k−1)
Ki

e+1

S[j]. (10)

Furthermore, the total swipe probability of all chunks in the
video Vi is 1, i.e.,

∑Ki

k=1 pi,k = 1.
It is worth emphasizing that different categories of videos

may have distinct state transition models. By matching the
video category with the corresponding model, we can extract
valuable information that aids in making informed preloading
decisions, including buffer control and bitrate selection. This
ensures that the preloading strategy is tailored to the charac-
teristics of each video type, leading to effective and efficient
preloading. From the established state transition model, we
can extract the following valuable insights
• Minimum Viewing Duration Kmin: Kmin represents the

minimum number of video chunks that a user typically
watches before swiping the video (Kmin ≥ 1);

• Short viewing Duration Kshort: Kshort represents swip-
ing video with a high probability P short

th after watching
only a few chunks (Kshort ≤ max{0.1Ki, 5}), i.e., the
minimum value that satisfies

∑Kshort

j=1 pi,j > P short
th .

• Long Viewing Duration Klong: Klong represents swiping
video with a high probability P long

th after watching nearly
the whole video (Klong ≥ max{0.9Ki,Ki−5}), i.e., the
minimum value that satisfies

∑Ki

j=Klong
pi,j > P long

th .

C. Preloading Strategy

The preloading strategy for short video streaming is distinct
from that of conventional long video streaming because it
involves preloading both the current video and the next videos
in the recommended list. The primary goal of the preloading
strategy is to minimize bandwidth waste while improving
the user QoE concurrently. The proposed preloading strategy,
outlined in Algorithm 2 and Algorithm 3, focuses on two
essential aspects: buffer control and bitrate adaptation. We
first determine the buffer thresholds for the current video and
the next ones in the recommended list using the throughput
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Algorithm 2 DT-assisted adaptive preloading algorithm.
Input: The chunk viewing probability pi,k; The number of preload-

ing videos Np; Sleep time Tsleep.
1: Update the average throughput Cave, the predicted throughput

Ĉ;
2: Update Bth

ic and Bth
in with Ĉ and Cave, respectively;

3: if Bic < Bth
ic then

4: Derive r∗ic,k with Algorithm 3;
5: Download the current video vic with r∗ic,k;
6: else
7: for j in 1, Np − 1 do
8: if Bic+j < Bth

in then
9: Derive r∗ic+j,k with Algorithm 3;

10: Download the video chunk vic+j,k with r∗ic+j,k;
11: else if j == Np − 1 then
12: Sleep for Tsleep time;
13: end if
14: end for
15: end if

state and user swipe information. Subsequently, we select the
appropriate bitrate for preloading the video, aiming to enhance
the user QoE.

1) Buffer Control: We consider separate buffer thresholds
for the current video and the next videos in the recommended
list. The threshold of preloaded chunks for the current video,
denoted as Bth

ic
, is determined by balancing the need to reduce

rebuffering and bandwidth waste. The value of Bth
ic

depends
on the user’s viewing behavior and network throughput C, i.e.,

Bth
ic =

{
max{Bth∗

i , Bmin
ic
}+ dKlong

Ki
e, C ≥ Cworst

min

max{Bth∗
i , Bmin

ic
} − dKshort

Ki
e, otherwise

,

where Bmin
ic

denotes a minimum buffer threshold for the
current video.

For the videos in the recommended list, the threshold of
preloaded chunks denoted as Bth

in
, is determined to ensure

smooth playback and reduce rebuffering when swiping to the
next video. The value of Bth

in
depends on the user’s viewing

behavior and network conditions and is given by

Bth
in =

{
max{Bth∗

i − d Kmin

Kshort
e,Kmin, 2}, C ≥ Cworst

min

max{Bth∗
i ,Kmin, 2}, otherwise

.

2) Bitrate Adaption: To address the challenge of adaptive
bitrate selection in response to fluctuating network conditions,
we have devised an adaptive bitrate control scheme that
focuses on improving user QoE. The scheme dynamically
adjusts the bitrate of the video chunk to be downloaded, taking
into account the available network bandwidth and the buffer
state. Algorithm 3 outlines the steps of this scheme. The basic
idea is to adaptively adjust the bitrate according to the network
throughput and buffer state. This method can effectively reduce
bitrate variations, which degrades the user QoE performance.
Furthermore, the average throughput is used to match the
bitrate for the subsequent recommended videos instead of the
real-time throughput. Thus, the bitrate variations of the next
videos can be also reduced.

Algorithm 3 DT-assisted bitrate adaption algorithm.
1: if Preload the current video then
2: if A rebuffering event occurs then
3: Reduce the bitrate r∗ic,k according to Ĉ;
4: else if Ĉ < ric−1,k and Bic < Bth

ic /2 then
5: Reduce the bitrate r∗ic,k according to Ĉ;
6: else if Ĉ > ric−1,k and Bic > Bth

ic /2 then
7: Increase the bitrate r∗ic,k according to Ĉ;
8: end if
9: return r∗ic,k;

10: else
11: for j in 1, Np − 1 do
12: Match the bitrate r∗ic+j,k for the recommended videos vic+j

with Cave;
13: end for
14: return r∗ic+j,k;
15: end if

IV. PERFORMANCE EVALUATION

A. Experimental Setting

We use the trace-driven simulator provided in [13] to
evaluate the proposed DTAAP scheme, which simulates the
user’s playing and swipe behavior by sampling the offline
video retention rate table and the throughput traces. In this
simulator, there are 4 players in the recommendation list, i.e.,
5 players in total. Each video is encoded into 3 representations
on different bitrates (i.e., 750kbps, 1200kbps, and 1850kbps)
and further cropped into chunks with T0 = 1 second. The test
cases are divided into 4 network scenarios: 1) High bandwidth,
2) Medium bandwidth, 3) Low bandwidth, and 4) Mixed
bandwidth. For each case, we sample 50 playback traces,
multiplied by 20 network traces to evaluate the performance.
In accordance with [7], the weighting parameters for the
user QoE and the bandwidth usage ω1, ω2, ω3, and ω4 are
respectively configured as follows:s 1, 1, 1.85, and 0.5.

The proposed DTAAP is compared with the following
reference schemes:
• Fix-B: This scheme has a fixed buffer size for the current

video and the next videos in the recommended list;
• NextOne: This scheme preloads the next video until the

current video is fully downloaded [5];
• Network-based: This scheme dynamically adjusts the

buffer sizes for the current video and the next recom-
mended videos based on the predicted throughput [5];

• PDAS: This scheme leverages the user retention proba-
bility to build a probabilistic model, which is then utilized
to control the maximum buffer size and the bitrate [7].

B. Simulation Results

The utility results of our proposed DTAAP and the ref-
erence schemes are shown in Table I. It can be observed
that the DTAAP consistently achieves the best performance
across all network scenarios. This is because our DTAAP
strikes a balance between QoE performance and bandwidth
efficiency. With dynamic buffer threshold settings adapted
to the network condition and user viewing preference, our
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TABLE I
UTILITY PERFORMANCE ACHIEVED ON FOUR NETWORK SCENARIOS

Schemes High Medium Low Mixed
Fix-B 26.79 8.24 3.13 -1.92
NextOne 22.71 -16.78 -74.25 -67.91
Network-based 43.87 -17.35 -74.79 -64.65
PDAS 30.62 15.69 11.46 3.34
DTAAP 44.78 16.62 11.41 7.29
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Fig. 3. Performance of the proposed scheme and reference schemes.

DTAAP can achieve less bandwidth waste than other schemes.
Figure 3 (a) presents the bandwidth waste incurred by the five
schemes evaluated. It is evident that our proposed DTAAP
consistently achieves the lowest bandwidth waste across all
four network scenarios. The figure also highlights the trend
of increasing bandwidth waste as the available bandwidth
decreases. This is because selecting higher bitrates in favorable
network conditions leads to larger bandwidth waste.

Figure 3 (b) depicts the QoE performance achieved by
the five schemes. It is evident that our proposed DTAAP
consistently achieves high QoE values across all four network
scenarios. Notably, in the medium and mixed bandwidth sce-
narios, our DTAAP outperforms the other schemes, attaining
the highest QoE levels. Furthermore, in the low bandwidth
scenario, our DTAAP achieves the second-best performance,
closely approaching the best-performing scheme. These find-
ings underscore the effectiveness of our DTAAP in pro-
viding superior user experiences, particularly in challenging
network conditions. Additionally, it is observed that the QoE
performance gradually degrades as the available bandwidth
decreases. In comparison to the results depicted in Fig. 3 (a),
it is noteworthy that although the NextOne and Network-based
schemes achieve higher QoE performance than our DTAAP,
they also exhibit higher bandwidth waste. In particular, the

NextOne scheme shows significant bandwidth waste due to
their full preloading of the current video. This highlights the
trade-off between QoE performance and bandwidth efficiency.
While these schemes may provide better user experiences, they
come at the cost of increased bandwidth waste.

V. CONCLUSION

In this paper, we have investigated the adaptive preloading
problem in short video streaming with the objective of en-
hancing user QoE and reducing bandwidth waste. We have
proposed a novel digital twin-assisted adaptive preloading
framework, which can capture user network dynamics and
swipe patterns to enable adaptive video preloading. Extensive
simulations demonstrate that the proposed scheme can effec-
tively enhance user QoE and reduce bandwidth waste. The
proposed DTAAP framework can effectively and efficiently
utilize user-specific information to enhance the performance
of short video streaming in dynamic network environments.
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