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Abstract
We propose, FrameFlip, a novel attack for depleting DNN
model inference with runtime code fault injections. Notably,
FrameFlip operates independently of the DNN models de-
ployed and succeeds with only a single bit-flip injection. This
fundamentally distinguishes it from the existing DNN infer-
ence depletion paradigm that requires injecting tens of deter-
ministic faults concurrently. Since our attack performs at the
universal code or library level, the mandatory code snippet
can be perversely called by all mainstream machine learn-
ing frameworks, such as PyTorch and TensorFlow, dependent
on the library code. Using DRAM Rowhammer to facilitate
end-to-end fault injection, we implement FrameFlip across
diverse model architectures (LeNet, VGG-16, ResNet-34 and
ResNet-50) with different tasks (FMNIST, CIFAR-10, GT-
SRB, and ImageNet). With a single bit flipping, FrameFlip
achieves high depletion efficacy that consistently renders the
model inference utility as no better than guessing. We also ex-
perimentally verify that identified vulnerable bits are almost
equally effective at depleting different deployed models. In
contrast, transferability is unattainable for all existing state-of-
the-art model inference depletion attacks. FrameFlip is shown
to be evasive against all known defenses, generally due to the
nature of current defenses operating at the model level (which
is model-dependent) in lieu of the underlying code level.

1 Introduction

Deep neural networks (DNNs) have demonstrated impressive
performance on various tasks [19, 26, 70, 71]. However, their
security and safety usage is threatened by adversarial attacks
that are generally introduced either during the model training
phase or the model inference phase [31]. Training phase at-
tacks conventionally include data poisoning attacks, which
tamper with the model prior to deployment such that it devi-
ates from its benign behavior on either all inputs [32] (e.g.,
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model utility depletion) or specific inputs with triggers [21]
(i.e., backdoor attacks). A notable attack at the model infer-
ence phase is the adversarial example attack [59].

Conventional attacks attempt to breach either model in-
tegrity (i.e., training phase attack) or data integrity (i.e., infer-
ence phase attack). However, they do not target the integrity
of the hardware on which DNN models deploy and execute.
Recent work has looked at a new type of fault injection at-
tack [12, 29, 44, 53, 60, 68], where model integrity is violated
by compromising the underlying hardware. It tampers the
model in a manner similar to the conventional training phase
attack but occurs after the model deployment. Consequently,
all countermeasures applied prior to deployment are inapplica-
ble. In contrast to the conventional inference phase attack (i.e.,
adversarial examples), which only manipulates each incoming
input, the fault injection attack completely contaminates the
underlying model to compromise all upcoming inputs.

These studies demonstrate the feasibility of launching fault
injection attacks to compromise DNN model integrity after
deployment. However, there are still some challenges that
need to be overcome. Firstly, these works are all model de-
pendent. A DNN model has some tolerance on its weight
value change unless specific positional weights are delicately
changed. The positions of those critical weights are unique
to each victim model, and cannot be transferred to a differ-
ent model. Secondly, they all require injecting multiple bits
of fault deterministically and simultaneously, which is ex-
tremely challenging in practice. This is because flippable
memory cells in the DRAM are sparse and it is hard to find a
physical memory page that contains more than one flippable
bit [29, 60]. In addition, injected faults may need to be in-
creased as the model size increases. Thirdly, to be efficient,
these attacks all assume to have full knowledge of the victim
model – that is, white box access – which may not always be
available. This is problematic when the deployed model, and
its weight values, are updated through online learning, which
renders the previously identified vulnerable bits futile. To this
end, we are interested in the following research question:

Is it practical to universally breach the post-deployment
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Figure 1: Attack flow of FrameFlip.

DNN model integrity with a single-bit fault injection given
black-box victim models?
General Challenges. This work provides an affirmative an-
swer to the above research question. However, given the ex-
tremely stringent constraints, there are three crucial general
challenges (GCs):

• GC1: Model-independence. The exact bits of the model
weights that ultimately affect the inference result vary
from model to model, and even vary for the same model
between updates, e.g., through fine-tuning. In this con-
text, identifying a subset of bits that can be universally
applied to every model is challenging.

• GC2: Black-box knowledge. As for a DNN model al-
ready deployed on a server, in a typical application of
machine learning as a service, the model provider nor-
mally only offers an API interface to provision inference
results. Therefore, accessing the underlying model is
infeasible. In addition to GC1, this black-box condi-
tion (no knowledge of model weights, or even model
architecture) makes faulty bit identification seemingly
unattainable.

• GC3: Practical single-bit injection. While it is possible
to inject multiple faults into the hardware, primarily in
the main memory of the server, inducing a single-bit
fault deterministically is realistic. However, constrained
by GC1 and GC2, reducing a set of faulty bits to a single
bit that is able to universally affect any unknown models
seems almost impossible.

Our Solutions. If we follow the existing paradigm of fault
injection attacks on model inference, where the attack is con-
ducted from the model level, it is almost impossible to resolve
the research question when constrained by the above three
general challenges. We overcome this hurdle by looking at the
fundamentally different paradigm of the underlying code level.
At a high level, we inject faults into the compiled running
code library to consequently corrupt all model inferences that

are supported by the library for computation (see an overview
of the attack flow in Fig. 1). More specifically,

• To address GC1, the target runtime codebase supporting
the model inference is independent of the specific upper-
layer models.

• To address GC2, the libraries that are widely adopted
across mainstream machine learning frameworks are
identified. Faults induced into these libraries affect any
model that must require these libraries’ support.

• To address GC3, the branch condition of the code is
targeted to alter the control flow with a single bit flip to
amplify the fault adverse effect with a single-bit flip.

For GC1 and GC2, we identify libraries that provide fun-
damental functionalities across prominant machine learning
frameworks such as PyTorch [50], Tensorflow [3], Caffe [33],
and Apache MXNet [1]). The linear algebra backend is a basic
module of these Machine Learning (ML) frameworks, which
has critical effects on the DNN’s performance. To date, these
ML frameworks rely on high-performance Basic Linear Al-
gebra Subprograms (BLAS) to implement their linear algebra
backend. BLAS is a de facto standard for low-level linear alge-
bra routines, such as vector addition and dot product. Popular
BLAS implementations include OpenBLAS [64], Eigen [25]
and Intel MKL [61]. These implementations have been widely
applied to mainstream ML frameworks. Therefore, the linear
algebra backend is chosen as the targeted library.

To address GC3, the combined restrictions of single-
bit fault determination and practicality present three tech-
nical challenges. The first technical challenge is to deter-
mine salient vulnerable bits within the identified library—
ultimately, a single salient bit. We solve this by traversing
the cblas_dgemm function of the OpenBLAS library and
choosing all conditional branch instructions as vulnerable bit
candidates. The reason is that a branch instruction has a sig-
nificant effect on the final computation result due to control
flow change. More specifically, for each vulnerable candi-
date, we manipulate its condition and switch it to the other
traversed path. Then by evaluating the inference accuracy on
the flipped instruction, we can determine the most vulnerable
code point that exhibits the worst utility deterioration. We
have designed an automatic and efficient vulnerable bit search
scheme fulfilling the above goal by leveraging LLVM tools.

The second technical challenge towards practical single-bit
injection is to retain stealthiness. The injected fault tampers
with the control flow of the inference routine. In addition to
the desired degradation of inference accuracy, the fault in-
jection can lead to system warning notifications or result in
program crash [29]. Our extensive experiments confirm that
the compromised control flow of the inference routine does
throw warning notifications, including i) error and warning
messages from the DNN runtime process, ii) abnormal fluctua-
tion in the memory usage statistics, and iii) a denial-of-service
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incident at the inference service. Obviously, the occurrence of
either one of the listed warning signs notifies the victim of a
possible DNN fault injection exploitation, reducing the feasi-
bility of the attack. To circumvent this technical challenge, we
introduce a more controlled fault injection primitive, opflip,
to flip the opcode of an instruction to its adjacent instruction
as, in most cases, the bit flips in opcodes will yield other valid
opcodes in the x86 instruction set [24]. In this context, we
identify that there is a type of instruction, conditional jump
instruction, whose one-bit adjacent instruction is a valid in-
struction with the exact opposite semantics. By compromising
this instruction with a single bit fault, the control flow of the
DNN inference computation can be corrupted while avoiding
exceptions. Thus, the fault injection is stealthy.

The third technical challenge of a practical single-bit injec-
tion is the viable means of injecting the fault. To be practical,
the attacker has to be an unprivileged user who accesses the
victim model on a deployed server machine, e.g., co-resident
tenants in the MLaaS cloud. Therefore, fault injection re-
quiring physical/local access to the machine (i.e., radiation-
induced bit flip in main/DRAM memory [8]) is prohibited.
In this work, we leverage the Rowhammer attack to manipu-
late a code page that resides in the address space of another
process. We exploit memory deduplication [9, 55], a kernel
feature that most operating systems support. Memory dedu-
plication is a space-reduction scheme that allows identical
virtual pages, held by multiple processes, to be mapped to
one physical page, as long as none of them writes to this page.
As Rowhammer is capable of flipping bits in DRAM, flipped
code segmentations of the compiled ML codebase are located
in the page cache. After that, the compromised page remains
cached in the page cache. The OS does not detect this change
as it is directly made in the hardware by a completely isolated
process and it keeps providing the page cached modified copy
to the victim on subsequent accesses. Therefore, the effect
will synchronously appear on both sides since they essentially
map to the same page.

By systematically resolving three general challenges and
their associated technical challenges, we are now able to
demonstrate an end-to-end universal DNN model inference
depletion attack with a single bit flip. Notably, our attack de-
bunks all existing defenses because they only consider model
level fault injection attacks and not the lower code level fault
injection attack. We analyze existing prominent countermea-
sures in terms of effectiveness and performance overhead.
The results are summarized in Tab. 1.

In summary, we make the following key contributions:

• We reveal a new paradigm of universally depleting DNN
model inference by generally injecting fault into the
running compiled code, requiring only a single-bit flip to
stealthily and completely alter the program control flow.
The FrameFlip is the first end-to-end demonstrated attack
under the practical constraints of black-box knowledge

Table 1: The effectiveness and efficiency of the SOTA coun-
termeasures against miscellaneous fault-injection attacks.
( : Effective, :Effective while Inefficient, : Ineffec-
tive)

Proposed
Countermeasures RFA [42] BFA [53] TBT [54] TA-LBF [6] CFT+BF [60] Ours

Aegis [62]
DeepDyve [42]
Binarization [28]
Weight Clustering [28]
Weight Encoding [43]
RADAR [39]
SentiNet [15]
Weight Reconstruction [40]

and model-independence.

• We devise a new automatic algorithm AutoVIS to iden-
tify vulnerable instructions in commonly-used machine
learning code libraries. Our critical instruction search
scheme can measure the influence of each instruction
on the DNN model’s utility when those instructions are
flipped with a single bit fault.

• We evaluate the effectiveness of FrameFlip on 10 groups
of DNN benchmarks. FrameFlip outperforms the state-
of-the-art (SOTA) DNN prediction degradation attacks
implemented by tampering with the DNN weight param-
eters. Significantly, FrameFlip, for the first time, exhibits
high attack transferability across different DNN models.

• We investigate several state-of-the-art mitigation tech-
niques to prevent DNNs from fault injection attacks.
Experiments show that our proposed attack can success-
fully circumvent state-of-the-art countermeasures.

Ethical Considerations. Our FrameFlip exploits a publicly
known Rowhammer bug [35], and thus there is no need to
report it.

2 Background

2.1 Machine Learning Codebases
Implementing a fully functional DNN from scratch is an ex-
tremely demanding task since it requires proficient coding
skills and cross-domain expertise, e.g., algorithm optimiza-
tion and hardware acceleration. Therefore, the modern DNN
development pipeline is supported by industrial ML code-
bases (e.g., PyTorch [50], Caffe [33], TensorFlow [3] and
Apache MXNet [1]). Those ML codebases are comprised
of open-source repositories and off-the-shelf modules pro-
vided and maintained by commercial vendors and thousands
of contributors. ML codebases’ functions (e.g., training and
inference) rely heavily on tiled GEMM (Generalized Matrix
Multiply) which is implemented by high-performance BLAS
(Basic Linear Algebra Subprograms) libraries. BLAS is a de
facto standard for low-level linear algebra routines, which has
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(a) Demonstration of Double-
sided Rowhammer.

l oop :
mov ( x − 1) , %r10
mov ( x + 1) , %r10
c l f l u s h ( x −1)
c l f l u s h ( x +1)
jmp loop

(b) Code Snippet of Double-
sided Rowhammer.

Figure 2: Double-sided Rowhammer

extensively optimized blocked matrix multiply. Examples of
such libraries include OpenBLAS [64], Eigen [25], and Intel
MKL [61].

2.2 The Rowhammer Bug

DRAM (Dynamic Random Access Memory) is organized
in multiple memory channels. Each channel serves as a link
between the DRAM module (DIMM) and its corresponding
memory controller which is usually integrated into proces-
sors. A Dual Inline Memory Module (DIMM) is a physical
memory module attached to the motherboard, with one or two
ranks (on the front-side and back-side of the module). Each
rank usually has 8 banks for DDR3-DRAM and 16 banks
for DDR4-DRAM. A bank is the minimal unit the memory
controller can control and is a grid of memory cells arranged
in rows (wordlines) and columns (bit-lines). Each memory
cell has a capacity which can be charged and discharged. A
transistor controls access to the content of the capacity. When
reading a row, the memory controller activates the wordline.
The transistors in the activated row are opened and the con-
tent of all the capacitors on that row are discharged to the
bitlines. Sense amplifier circuitry on each bitline captures and
amplifies the signal and stores the result in the row buffer, and
also refreshes the charge in the active row.

The Rowhammer bug refers to a hardware vulnerability
validated on various DRAM chips [35]. As demonstrated in
Fig. 2, if an attacker rapidly accesses two DRAM rows (ag-
gressor rows) with row index x−1 and x+1 (i.e., double-sided
Rowhammer), this will result in electromagnetic interference
in row x, making its stored values flipped. This means that
if a memory cell in row x originally stores 0, then it will be
flipped to 1, or vice versa.

To mitigate the Rowhammer bug, DRAM vendors have im-
plemented hardware solutions in recent DRAM modules (e.g.,
DDR4), such as Target Row Refresh (TRR) [48]. However,
the TRR solution has been bypassed by TRRespass [20] via
the so-called many-sided Rowhammer. To date, the Rowham-
mer bug still remains a threat to commodity DRAMs.

3 Threat Model

3.1 Victim’s Capability

Trustworthy Model Training. The models are benign in the
sense that the training process is not tampered with by any
malicious party. The models are free from algorithm-based
adversaries, e.g., model poisoning [32] and Trojan attacks [41,
45]. This is a practical assumption for well-trained models.
The models can be either trained on a secure training device or
downloaded from a trusted source. In both cases, the training
process is not tampered with. This is in contrast to existing
algorithm-based attacks that inject stealthy payloads to the
DNN model and re-distribute it to victim users (e.g., model
poisoning and Trojan attacks).
Resource-Sharing Platforms. Following prior bit-flip-based
attacks [29, 54, 68], we assume that a trained deep learning
model is deployed on a resource-sharing platform that pro-
vides an inference-phase service. This assumption is feasible,
as current MLaaS jobs are deployed on clouds [17, 55, 66].
Online Learning. During inference, the trained DNN model
is loaded into the system’s (shared) memory and applied
to the real world. However, in most inference practices, a
DNN that achieves high evaluation results in training does
not perform as effectively for real-world samples. This is
mostly caused by the distribution discrepancy between the
real-world data and the training data [57]. To tackle this is-
sue, a simple but efficient approach is to continually fine-tune
the trained DNN with more real-world samples after it goes
online. Therefore, the model weights may or may not get up-
dates, and the attacker is unaware of either circumstance. This
deployment paradigm is becoming a typical scenario due the
prevalence of MLaaS platforms [57, 69]. Note that, for those
online learning cases, existing weight-based fault injection
attacks [12, 29, 53, 54, 60, 68] are invalid because of their
strong dependency on the DNN’s weight parameters. Once
the model weights are updated, the vulnerable bits that need
to be flipped may also change.
Deployment of Defenses. We assume the victim can apply
any SOTA defense against inference depletion attacks.

3.2 Attacker’s Capability

Attacker’s Goal. The attacker aims to deplete the DNN’s
inference utility by injecting a single-bit error into the runtime
ML codebase while maintaining maximal stealthiness. The
injected error tampers with the normal control flow of the
inference routine, causing a degradation of inference accuracy.
Meanwhile, the attacker aims to induce as few warnings as
possible, to make the attack imperceptible as well as to extend
the living time of the injected error. When a fault is injected,
its adverse effect remains effective until a system reboots.
System Side. We assume that the attacker process can co-
locate with the target DNN service, sharing computation re-
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sources with the victim’s process. Specifically, the attacker
is an unprivileged user who shares the same physical mem-
ory as the victim. This is a common assumption adopted by
previous works [24, 29, 68]. In this paper, we leverage double-
sided Rowhammer and many-sided Rowhammer for DDR3
and DDR4 chips, respectively, as the primitive of software-
induced DRAM fault injection. Both hammering techniques
need to know the DRAM memory address mapping function.
We assume the adversary can obtain the DRAM addressing
scheme by applying reverse engineering techniques [51, 63].
We assume that the OS of the resource-sharing platform is
secure. Particularly, the system has installed an up-to-date ad-
ministrative program, which implements necessary software-
level confinement policies such as process isolation.
Model Side. The threat model assumptions of existing
works [12, 29, 53, 54, 68] are conventional white-box attack
approaches, that is, an adversary is assumed to have access
to the network architecture, weight values and one batch of
test data. Note that it is feasible to steal the model architec-
ture [22] and model weights [52] through the side-channel
information in the MLaaS setting. In contrast to them, we
void such assumptions by adopting a black-box setting where
no prior knowledge of a target network architecture (including
weights at deployment and online weight updates) is required
as the transferability of our attack applies to various network
architectures (reported in our experiments).
ML Codebase Side. Different to existing works that require
the attacker to know model parameters, this work requires the
attacker to know which ML frameworks are utilized by the
model. Following Yan et al. [67], we believe the knowledge
of open-source ML frameworks is widely used and publicly
available (e.g., Tensorflow, Pytorch, Caffe, and MXNet), while
the victim’s DNN weight parameters are valuable intellectual
property and are private. Hence, it is easier for an attacker to
acquire knowledge about the ML frameworks than the weight
parameters of the DNN. For the model inference frameworks
that are not within the set of the mainstream ML frameworks
mentioned above, their BLAS backends may still be one of
the reputable, efficient, and standard linear algebra libraries,
such as OpenBLAS, Eigen, and MKL. As implementing these
libraries requires advanced expert knowledge of both algo-
rithms and hardware to achieve optimal performance, it is
unnecessary and difficult to implement these BLAS back-
ends from scratch. Once ML frameworks adopt the linear
algebra libraries mentioned above, they become vulnerable
to our attacks. Notably, all mainstream ML frameworks (e.g.,
TensorFlow, PyTorch, Caffe, and MXNet) are supported by
the OpenBLAS library. Thus, our security analysis can be
practically applied to all of these frameworks.
Options for Linking. Static linking links related library func-
tions directly into a victim’s binary, and thus the linked func-
tions cannot be called by other binaries. Consequently, Frame-
Flip cannot find the exact physical locations of vulnerable bits
of library functions in the victim process and instead might
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Figure 3: An overview of FrameFlip.

cause the victim to crash. However, static linking generates
large-size binaries and dynamic linking produces small-size
binaries. Thus, developers are likely to use dynamic linking
in practice to distribute their models. Therefore, in this work,
we assume the victim adopts dynamic linking to link object
files into an executable output file.

4 FrameFlip Design

In this section, we present FrameFlip in detail. FrameFlip
is comprised of three steps: the vulnerable bit search in ML
codebases, memory massage, and single-bit fault injection.
To clarify the notations, we call bit flips found in the victim’s
physical memory “flippable bits”, and bit flips found in ML
codebase search “vulnerable bits”. Fig. 3 demonstrates the
overview of the proposed FrameFlip.

The attack is comprised of offline and online phases. In
the offline phase, the attacker scans the ML codebase via an
automatic vulnerable bit identification algorithm (detailed
in Section 4.2) to select the instruction to be flipped in the
online phase. In the online phase, the attacker scans the tar-
get memory to identify a suitable bit flip, and exploits the
memory waylaying to relocate the vulnerable instruction into
the matched memory page (i.e., the flippable page has the
same page offset and flipping direction). At last, the attacker
employs a hammering technique to flip the bit in the specific
memory cell.

4.1 Vulnerable Bit Search in ML Codebase

In this step, the adversary identifies the bit to be flipped in the
ML codebase. Note that in our threat model, attackers do not
need to manipulate the codebase repository and redistribute it.
The attacker is only required to perform vulnerability analysis
on the codebase.

4.1.1 Linear Algebra Backend

ML codebases invoke miscellaneous shared libraries (ELF
files) to support its foundational functions. In practice, a func-
tion called GEMM, a part of the BLAS (Basic Linear Algebra
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Subprograms) library is invoked to make deep neural net-
works perform faster and more power efficient. Note that
these shared libraries are optimized for algorithms and hard-
ware, and thus possess high performance on time and space
complexity. We choose the shared library of the linear algebra
backend as the attack module because of its indispensabil-
ity and wide adoption. Implementations of the linear algebra
backend used by ML codebases are compiled into linkable
object files with file extensions such as .so (Shared libraries)
for Unix-based systems. A shared library is comprised of
several sections specified in a section header table. The most
important section is the .text section which holds the ex-
ecutable instructions of the library. For a shared library, its
.text section is a list of independent functions that can be
invoked by external ELF files.

The shared library that contains the linear algebra back-
end implements a set of APIs defined in the Basic Linear
Algebra Subprograms (BLAS) standard. For instance, scalar
and vector operations are defined in level 1 BLAS, including
the dot product (DOT: xxxT yyy) and vector scaling (SCAL: αxxx).
Vector-matrix operations are defined in level 2 BLAS. The op-
erations include general matrix-vector multiplication (GEMV:
αAxxx+ βyyy) and general rank 1 operation (GER: αxxxyyyT +A).
Matrix-matrix operations are defined in level 3 BLAS and
include general matrix multiply (GEMM: αAB+βC).

In the next subsection, we present a method for identifying
a vulnerable bit in ML codebases that can be exploited by an
attacker. Our approach involves a meticulous code analysis of
the linear algebra backend, examining the control flow graph
from junction blocks to individual instructions, and ultimately
identifying and locating the vulnerable bit.

4.1.2 Vulnerable Code Statements: Branch Statements

In code analysis, a control-flow graph (CFG) is a graph rep-
resentation of all paths that might be traversed through a
program during its execution. In a CFG, each node represents
a basic block, which is a straight-line piece of code sequence
with no branches in except at the entry and no branches out
except at the exit. In particular, the processor must execute
the entire basic block from start to finish and there are no in-
structions that can leave this basic block except the entry and
exit points. This restricted form makes a basic block highly
amenable to program analysis. Directed edges in the CFG
represent the relationships among blocks, i.e., jumps in the
control flow. By definition, there is an edge from block b1
to block b2 if and only if the code in b2 can be executed im-
mediately after the code in b1. Fig. 4 demonstrates the CFG
of a demo binary search program. In the assembly code we
can find that conditional and unconditional branch instruc-
tions that comprise the global control logic of the program,
as represented by the CFG.

Compared with the basic blocks, most of which are not
invoked by the control logic of the program, the control flow

Figure 4: Demonstration of CFG.

statements (edges in CFG) are critical to controlling the ex-
ecution logic of the whole program. More specifically, the
control flow statements can alter the contents of the CPU’s
Program Counter (PC). The PC maintains the memory address
of the next machine instruction to be fetched and executed.
Therefore a control instruction, if executed, causes the CPU
to execute code from a new memory address, changing the
program logic. Control flow statements mainly contain three
types of control instructions, listed as follows:
Jump instructions directly modify the value of the PC with
another basic block’s entry point other than being incremented
past the current instruction to its next instruction. Typical
jump instructions in assembly language include je, jne, jg,
and jle. Jumps typically have unconditional and conditional
forms where the latter may be taken or not taken (the PC is
modified or not) depending on some conditions.
Call instructions are used to implement subroutines. In as-
sembly language, it is presented as the call instruction. The
call instruction pushes the current value of the PC to a stack
data structure in memory, and leaves this value as the return
address. Upon completion of the subroutine, this return ad-
dress is restored to the PC, and program execution resumes
with the instruction following the call instruction.
Return instructions pop a return address off the stack and
load it into the PC register, thus returning control to the calling
routine, i.e., a ret instruction.

Among those control flow statements, the jump instruction
possesses semantic similarity, in which its adjacent instruction
is still a valid instruction but with the opposite semantic. This
property can minimize the risk of program crashes introduced
by control flow tampering. Fig. 5 illustrates the semantic
similarity property of jump instructions. Each node in Fig. 5
presents an instruction (denoted by an opcode of x86-64 ISA),
and the adjacent node presents its adjacent instructions in
which the Hamming distance is 1. In particular, there is only
1 bit of difference in their opcodes. Meanwhile, those two
instructions have the same operands. Note that even if two
instructions only have 1 bit of difference in their opcode, they
may not be thought of as adjacent. Since, if we exchange their
opcodes, it will result in invalid semantics due to a mismatch
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Figure 5: Demonstration of the adjacent instruction.

in the operands format, such as je (jump if equal) with 1
operand and xor (exclusive or) with 3 operands.

As demonstrated in Fig. 5, the adjacent instructions of
the jump instruction je (jump if equal) contain its semantic
opposite instruction jne (jump if not equal). The semantic
opposite instruction of jg (jump if greater than) also appears
in its adjacent instructions (i.e., jle), as well as jc (jump if
carry) and jnc (jump if no carry). This observation indicates
that a single bit flip in the opcode of branch instructions
can switch the semantic of the control flow into the opposite
branch. Based on this observation, we selected the conditional
jump instructions as the target instruction to compromise the
global control logic of the program.

4.1.3 Vulnerable Bit in Opcode

In this subsection, we introduce the process of how the at-
tacker selects the specific bit to be flipped in chosen branch
instructions. On the processing architecture, a given machine
instruction may specify: i) the opcode (the instruction to be
performed) e.g., add, copy, test; or ii) any explicit operands
(registers, literal/constant values, addressing modes used to
access memory). For readability for programmers, assem-
bly language was designed to use a mnemonic to represent
each low-level machine instruction. For each machine in-
struction, assembly language usually has one corresponding
statement. For instance, the instruction cmp $0x65, %edi
(AT&T format) corresponds to the machine code 83 ff 65,
where 0x83 is the opcode with the corresponding format
CMP r/m32, imm8 (Intel format) under the x86-64 ISA. The
machine code 0xff tells the processor to fetch the first
operand from the EDI register. 0x65 is an immediate operand.

Flipping any bit in the instructions can dramatically affect
the operation results of the instructions. Notably, when the bit
flip appears in the opcode, the semantics of the instructions
are manipulated. Since the potentially flippable memory cells
in the DRAM are sparse, it is hard to find a physical memory
page that can flip more than one bit [29, 60]. To minimize the
cost of attacking time and the requirement of the hardware
constraints, we select the bit in the opcodes as the vulnerable
bit to be flipped.

Takeaway 1: In summary, given an ML codebase, we
have selected the shared library of the linear algebra
backend as the attack module because of its indispens-
ability and wide adoption. We have selected the con-

ditional jump instructions from a shared library (i.e.,
OpenBLAS), to manipulate the control flow within the
program and minimize the risk of program crashes. Fi-
nally, we have identified the vulnerable bit to be flipped
within the opcode.

The vulnerability of a branch statement, or candidate bit,
is measured by two properties: the degree of degradation
induced in the DNN model and whether the change gen-
erates warnings or crashes. There are 65913 over 843724
(8%) branch instructions within the shared library (i.e.,
openblas-0.3.20.so) that need to be verified and compared
according to this measure. To avoid manually analyzing each
branch statement, we introduce an automatic and efficient
algorithm to identify the most vulnerable code point.

4.2 Automatic Vulnerable Instruction Search

In this subsection, we introduce an LLVM-based Automatic
Vulnerable Instruction Search algorithm (AutoVIS) that au-
tomatically identifies the most vulnerable bit in the linear
algebra library of the ML codebase.

LLVM is a set of compiler and toolchain technologies
used to turn source code (e.g., C programs) into a language-
independent intermediate representation (IR) that serves as a
high-level assembly language that can be optimized by LLVM
passes. Then the LLVM backend turns the IR into the final
machine code. In this process, LLVM passes perform the
transformations and optimizations that make up the compiler.
In this work, we implement a LLVM pass to analyze the linear
algebra library (i.e., cblas_dgemm function of OpenBLAS).
In particular, the LLVM compiler decomposes the program
into different levels of granularity according to hierarchical
relationships (function units, basic blocks, and instructions)
within the code. In AutoVIS, we traverse each instruction and
assign a branch instruction an index (Branch Index). For each
branch instruction (i.e., br, switch and select in LLVM
IR), we employ the opcode flipping primitive to compromise
the control logic of the program.

Specifically, the AutoVIS algorithm was defined by over-
riding the llvm::ModulePass::runOnModule method and
registering it as a standard LLVM pass. The AutoVIS algo-
rithm was written in the required format of an LLVM pass
and then compiled using CMake, resulting in a shared object
file (.so in Linux). Next, we utilized the optimization tool
provided by LLVM, namely opt, to dynamically load the
shared objective file generated above and modify the IR of the
cblas_dgemm function according to the AutoVIS algorithm.
Finally, the LLVM backend converted the modified IR into the
binary code for different ISAs. In this way, for each branch
instruction, we generate a re-compiled corrupted version of
the cblas_dgemm function by invoking our AutoVIS Pass.
The details of the AutoVIS are shown in Algorithm 1.

In Algorithm 1, parseOpcode translates an instruction into
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Algorithm 1: LLVM-based automatic vulnerable bit
search algorithm

Input: IR files of compiled ML codebase Code, DNN infer
infrastructure network

Data: Validation dataset dataset
Output: Vulnearble code points in code section that can be used to

inject fault
1 Vulnerable set V ←{};
2 // Random guess accuracy
3 accrandom← 1/numO fClasses(dataset);
4 foreach functional unit F in Code do
5 foreach basic block BB in F do
6 foreach instruction Inst in BB do
7 if Inst ∈ {br,switch,select} then
8 opcode← parseOpcode(Inst);
9 instrument(Inst,opcode);

10 lib← generateLibrary();
11 model←

buildDeepLearningApp(lib,network);
12 acc← in f erence(model,dataset);
13 if acc≤ accrandom then
14 V ←V ∪{V};
15 end
16 recover(Inst,opcode);
17 end
18 end
19 end
20 end
21 return V ;

its opcode. The instrument function in line 9 queries all ad-
jacent instructions for a given instruction, then returns the
instruction with the opposite semantic. After the traversal, the
algorithm outputs the vulnerable bit location in the shared
library’s code section that can be used to inject fault. We
then evaluate the prediction accuracy of the DNN inference
infrastructure that invokes the modified linear algebra library.
By evaluating all of these branch statements, we can find the
most vulnerable branch instruction that has the best attack
performance (most utility degradation, neither warnings nor
crashes). All these actions are performed automatically by
LLVM and only take tens of minutes. In contrast, as reported
by Hong et al. [29], a weight-based fault injection would take
approximately 942 days to identify a single bit corruption
in a 138M VGG model on a 488 node high-performance
computing cluster.

In AutoVIS, the LLVM compiler plays a critical role, as
it enables us to inspect and manipulate instructions. LLVM
translates human-readable code (e.g., C) to executable ma-
chine instructions. This compiling process can be briefly de-
composed into three phases, namely, programming code, inter-
mediate representation (IR), and machine-level instructions.
Our LLVM plugin is embedded in the process of translating
from IR to instructions. The plugin inspects every incoming
IR, filters the conditional branching instructions (a subset
of IR opcodes), and modifies the branch by changing the
branching condition. The plugin helps us produce modified

BLAS libraries in which exactly one branching condition is
maliciously modified. The modified library acts as the candi-
date and is linked to the DNN model. If this modified library
achieves the best attack performance (most utility degrada-
tion, neither warnings nor crashes), the corresponding branch
instruction is chosen as the target conditional branch.

Takeaway 2:
(i) Executed Offline. Note that our algorithm is executed
offline because the targeted ML codebases are open-
sourced. This avoids the time overhead concern arising
from the brute-force strategy.
(ii) Scalability. AutoVIS is designed to improve the
efficiency of the complete analysis of ML Codebases as
they scale up. It is also easily extended to other libraries.

5 End-to-End Attack via Rowhammer

By employing the automatic vulnerable instruction search
algorithm, the attacker can identify the most effective instruc-
tion in the victim ML codebase, as measured by utility degra-
dation and the requirement that the change does not induce
warnings or crashes. The attacker now needs to locate the
corresponding vulnerable bit at the flippable physical location
in the DRAM, and precisely induce the desired bit flip in real
hardware systems. Specifically, the attacker first identifies
the physical pages that contain flippable memory cells that
match the virtual page containing the found vulnerable in-
struction (i.e., has the same bit offset and flip direction). Then,
the attacker employs the memory waylaying technique [24]
to relocate the page containing the vulnerable instruction
to one of the matched physical locations mentioned above.
Finally, the attacker prepares the pattern for the aggressor
rows of Rowhammer and frequently accesses these rows to
successfully obtain the desired bit flip.

5.1 Offline Memory Profiling
Memory profiling is a process utilized to locate the addresses
of flippable bits in the DRAM. This procedure can be ex-
ecuted offline before the victim starts to operate. In partic-
ular, we perform double-sided Rowhammer or many-sided
Rowhammer on randomly allocated memory and document
all the identified bit flips. To enable the hammering technique,
the attacker configures its virtual pages in physically consecu-
tive rows in the same bank (sandwich layout) of DRAM chips.
Thus, the attacker should crack the virtual-to-physical address
translation and decode the DRAM addressing mechanism.
Cracking Virtual-to-Physical Address Translation. The
attacker exploits the deterministic behavior of the buddy allo-
cator by coercing the kernel to provide physically consecutive
memory [14, 37]. Specifically, the attacker keeps requesting
small free memory blocks using the mmap system call with the
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MAP_POPULATE flag, until there are less than 2 MiB of free
space left in blocks with an order smaller than 10.

If the free space in blocks of order below 10 is less than
2MiB, the attacker sends two 2MiB requests. The kernel sat-
isfies the first request by splitting one of the 10th order blocks
(4 MiB in size). Therefore, the second request is fulfilled by
a consecutive physical space. The second request’s allocated
memory has an identical lowest 21 bits in the virtual and
physical addresses. Consequently, this block can have the
equivalent offset in both virtual and physical address spaces.

Decoding Physical-to-DRAM Address Mapping. Note that
the physical address space profiles memory as a continuous
large array, which hides the components of the actual physical
memory architecture, such as channel, DIMM, rank, bank,
row, and column. We are required to identify three physical
addresses that are located in three consecutive rows within the
same bank of DRAM chips. We exploit a DRAM row buffer
timing side channel [51] to identify the pages belonging to
the same bank.

When two physical addresses (presented as A and B) are
located in the same bank, if we alternatively access them,
the time for accessing B is the sum of the row buffer update
time (switch from A to B) and the time for reading the row
buffer (read B from row buffer). Conversely, when A and
B are in different banks, and we alternatively access them,
the accessing time for B is only the row buffer reading time,
because it is recently accessed. Employing this row buffer
timing channel, we can know whether two physical addresses
are located in the same bank of DRAM.

Based on the primitives mentioned above, we have adopted
the Rowhammer-test tool [2] to profile our DDR3 DRAM
chips and TRRespass [20] for DDR4 DRAM chips. The re-
sult of memory profiling is a list of bit positions that are flip-
pable in the physical memory (i.e., candidate flippable pages).
Each entry records the partial physical address of the byte
that contains the flippable bits (because we can only partially
translate virtual to physical addresses in a consecutive 2MB
block), the bit index within the memory cell and the flipping
direction. Fig. 6a demonstrates the bit flip locations in one
bank of our DDR3 chip. From the physical address, we can
infer the offset of the flippable bits within a page. In a 4KB
page, the offset refers to the index of the byte that contains the
flippable bits. The offset is used to rule out bit flips that are
inconsistent with our attack. As demonstrated in Fig. 6b, the
vulnerable page must have the same page offset and flip direc-
tion as the flippable page. The offset of the vulnerable page
from the starting address of the cblas_dgemm function can
be gained in the compiling process, where we know to which
instruction the target is translated. The attacker can translate
the virtual address to a physical address using methods such
as side-channel attacks [51]. The Rowhammer attack handles
the rest of the attack, mainly including a page relocation and
triggering an accurate bit flip.
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Figure 6: Demonstration of offline memory profiling and
page offset alignment.

5.2 Rowhammer Exploitation

Memory Massage. We exploit the memory waylaying [24]
technique to relocate the vulnerable virtual page to the
matched physical page found in the previous step. Memory
waylaying performs on pages in the page cache. Since these
cache pages can be evicted at any time, they are not shown
in the system’s memory utilization and are treated as avail-
able memory. After being removed from DRAM, page cache
pages are randomly relocated when accessed. Continuous
eviction eventually places the vulnerable page on the physical
location desired by the attacker. Memory waylaying leverages
the prefetch side channel to identify when a virtual page is
loaded to predetermined physical locations. Once the data is
in the desired location, the intended bit flip can be induced.
Rowhammer Exploitation. Once the vulnerable bit is pop-
ulated to the flippable bits in DRAM, the attacker starts ini-
tializing two aggressor rows to hammer the victim row in the
middle. As per the prior research on Rowhammer attacks [68],
we use a column-page-stripe pattern to initialize the aggressor
rows. Specifically, the attacker duplicates the victim row’s
bits to two nearby aggressor rows and then sets the stripe
pattern for the column that is expected to experience a bit
flip. Meanwhile, the remaining bits remain untouched. This
allows the attacker to have precise control over the bit flips
at targeted locations and prevent simultaneous bit flips at un-
wanted positions. Once the targeted bit flip is triggered by the
attacker, the change instantly takes effect on the victim side.
On subsequent accesses, the compromised library in the page
cache is continuously provided to the victim.

6 Evaluation

In this section, we provide a comprehensive evaluation of
our proposed FrameFlip, to demonstrate its effectiveness and
efficiency. Specifically, we report the experimental setting in
Section 6.1, evaluate the effectiveness and performance in
Section 6.2, and compare FrameFlip with other fault injec-
tion attacks in Section 6.3. Lastly, we evaluate the ability of
FrameFlip to circumvent the software-based defense method
(DeepDyve [42]) in Section 6.4.
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6.1 Experimental Setting

Hardware Setup. Our DNN models are trained and analyzed
on the Nvidia Titan RTX GPU platform. The GPU operates at
a clock speed of 1350MHz with 24GB of dedicated memory.
The trained model is deployed on a testbed machine where
our proposed attack is evaluated. The inference service runs
on a Comet Lake-based Intel i7-10700 CPU. As for mem-
ory configuration, the testbed machine possesses an 8 GB
Apacer DDR4 SDRAM memory module. For this module,
TRRespass has been executed and reports that double-sided
Rowhammer is effective in inducing bit flips, i.e., many-sided
Rowhammer becomes double-sided Rowhammer.
Datasets. We evaluate FrameFlip on four widely used
datasets, including FMNIST, CIFAR-10, GTSRB, and Im-
ageNet. FMNIST [65] consists of 28×28 grayscale images,
associated with a label from 10 fashion classes. The train-
ing set has 60,000 examples and the test set has 10,000
examples. The CIFAR-10 dataset [36] consists of 60,000
32×32 colour images in 10 classes, with 6,000 images for
each class; so there are 50,000 training images and 10,000
test images. The German Traffic Sign Recognition Benchmark
(GTSRB) [30] contains 43 classes, split into 39,209 training
images and 12,630 test images. For the ImageNet dataset,
we use its ILSVRC-2012 subset [56] containing 1,281,167
colored training images and 50,000 evaluation images of
size 224×224 coming from 1000 classes. These datasets are
widely used by previous related works [29, 53, 68].
Models. For different datasets, we choose four popular net-
work architectures that are widely used for image classifi-
cation tasks, including VGG-16 [58], ResNet-34, ResNet-
50 [27] and LeNet [38]. For CIFAR-10, GTSRB, ImageNet
datasets, we adopt three network architectures (VGG-16,
ResNet-34, ResNet-50) to perform the classification tasks.
In addition, we use LeNet-5 to learn models on the FMNIST
dataset. Thus, we have 10 groups of configurations that cover
tasks of varying difficulty.
Metrics. The objective of FrameFlip is to degrade the pre-
diction accuracy of DNN models. A lower prediction accu-
racy after attacking (noted as ACCcorrupted), indicates better
attack performance of FrameFlip. The baseline of attack per-
formance is random guess prediction accuracy defined as
ACCrandom = 1/CLASS(D), where CLASS(D) is the number
of classes of the dataset D.

The issue with using ACCcorrupted to define the attack
performance is that ACCcorrupted is influenced by the DNN
model’s original prediction ability. An untrained DNN model
may also achieve an extremely low ACCcorrupted after an
attack, making it difficult to properly measure the attack
performance. So we define the relative prediction loss
as the attack performance metric: RPL = (ACCpristine −
ACCcorrupted)/ACCpristine, where ACCpristine presents DNN
model’s prediction accuracy before the attack. Under this
measurement, RPL equal to 0.00% means the attack has no

Table 2: The attack performance of FrameFlip on multiple
datasets and network architectures.

Dataset Network
Prediction

Accuracy (%) RPL (%)

Before
Attack

After
Attack

Random
Guess

ImageNet
VGG-16 71.59 0.00

0.10
100.00

ResNet-34 73.30 0.00 100.00
ResNet-50 76.15 0.00 100.00

GTSRB
VGG-16 92.36 0.71

2.33
99.23

ResNet-34 95.14 0.71 99.25
ResNet-50 94.67 1.19 98.75

CIFAR-10
VGG-16 92.48 10.00

10.00
89.19

ResNet-34 93.44 9.47 89.87
ResNet-50 93.58 10.00 89.31

FMNIST LeNet 88.91 6.53 10.00 92.66

effect on the performance of DNN models. While RPL equal
to 100.00% means the DNN model loses its prediction ability
after the attack.

6.2 Attack Performance

Tab. 2 demonstrates the attack performance of FrameFlip on
4 datasets and 4 network architectures. The RPL denotes the
relative prediction loss of the model after the attack. A higher
RPL corresponds to better attack performance. As shown in
Tab. 2, for ImageNet dataset, the average prediction is 73.68%
across three network architectures (VGG-16, ResNet-34 and
ResNet-50) before the attack. After the attack, the predic-
tion accuracy of all three models degrades to 0.00%, and
the observed RPL is 100.00%. The experimental results on
ImageNet show that FrameFlip completely degrades the pre-
diction utility of three dominant DNN network architectures.
The 0% accuracy is a natural outcome of the fact that bit
flip actually incurs a deterministic change of behavior to the
branching instruction. With the property of “deterministic”,
by triggering a bit flip, a conditional branch, which is origi-
nally evaluated as TRUE, will always be flagged as False with
the same set of inputs. As a result, the model behavior after
the attack is not random, but deterministic instead. Therefore,
it is very likely that for a highly accurate model, the attacked
model always produces a false classification, leading to a 0%
accuracy. For the GTSRB dataset, the average prediction is
94.06% across three network architectures (VGG-16, ResNet-
34 and ResNet-50) prior to the attack. After the attack, the
average prediction accuracy of all three models is reduced
to 0.87%, and the observed RPL is 99.08%. The attack per-
formance is close to the upper bound (100.00% RPL). For
CIFAR-10 dataset, the average prediction is 93.17% across
three network architectures (VGG-16, ResNet-34 and ResNet-
50) before the attack. After the attack, the average prediction
accuracy of all three models degrades to 9.82%, and the aver-
age RPL reaches 89.46%. For FMNIST dataset, the prediction
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Figure 7: The severity of 116 branch instructions on 10
DNN-based classification tasks.

is 88.91% before the attack. After the attack, the prediction ac-
curacy degrades to 6.53%, and the RPL is 92.66%. Compared
with ImageNet, GTSRB and FMNIST datasets, the attacker
performance on CIFAR-10 is lower but still achieves lower
prediction accuracy than the random guess.

In addition, FrameFlip achieves better attack performance
on tasks that have more classes, i.e., the average RPLs for
ImageNet (1000 classes), GTSRB(43 classes), CIFAR-10(10
classes) datasets are 100.00%, 99.08% and 89.10%, respec-
tively. In summary, the results shown in Tab. 2 manifest the
effectiveness of FrameFlip on a variety of datasets and net-
work architectures that cover tasks of varied difficulty.

6.2.1 Transferability

Recall that AutoVIS finds the vulnerable branch instruction
in a compiled cblas_dgemm of the OpenBLAS library. These
vulnerable instructions are defined as attack code points. The
attack transferability of these code points means that code
points found in one attack instance (ImageNet dataset and
ResNet-34 network) have comparable attack performance in
other attack instances.

Fig. 7 reports the severity of 116 branch instructions on
10 DNN-based classification tasks. A strip in each row rep-
resents a branch instruction, the color of this strip represents
its severity for the DNN model’s prediction accuracy when
this instruction is flipped. A deeper color indicates a more
significant degradation in model accuracy. A shallow color
indicates that the instruction does not have an effect on the cor-
responding DNN model’s prediction accuracy. As we can see
from Fig. 7, those attack code points that have incurred dra-
matic utility degradation (see deeper colored strips in Fig. 7)
are general and transferable, which indicates we can always
choose those attack points to be flipped and achieve a satisfy-
ing attack performance on different datasets and networks.

Tab. 3 further shows details about the severity of those at-
tack points on 10 classification tasks. The transferability of
those attack points reveals that there exist some universal vul-
nerable instructions that are datasets- and networks-agnostic
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Figure 8: Comparison with existing works on attack per-
formance.

and potentially exploited by fault injections.

6.3 Comparison with Existing Work
In this subsection, we compare the attack performance and
attack cost with existing work. Bit-Flip attack [53] and Deep-
Hammer [68] are two comparable fault injections attacks
against the DNN model’s weight parameters via Rowhammer.
In these works, the attacker searches for vulnerable bits in
the DNN model’s weight parameters. When those vulnera-
ble bits are flipped by Rowhammer, the prediction accuracy
the prediction accuracy of the model degrades. Their attack
objectives are the same as ours, i.e., degrading the prediction
accuracy of DNN models. So we compare our work with
these two DNN fault injection attacks.

For comparing the attack performance, we evaluate the pre-
diction accuracy of the three different attacks on two datasets
and three network architectures. The results are presented in
Fig. 8. As shown in Fig. 8, the red dash lines are the baseline
(i.e., random guess prediction accuracy). For ImageNet and
CIFAR-10 datasets, they are 0.1% and 10% respectively. The
results shown in Fig. 8a show that the prediction accuracy
after Bit-Flip attacks and DeepHammer is still higher than the
random guess on the ImageNet dataset. On the contrary, the
prediction accuracy after our FrameFlip attack is significantly
lower than the random guess. For the CIFAR-10 dataset, all
three attacks induce a similar prediction accuracy. Note that
FrameFlip maintains the best attack performance. The results
demonstrated in Fig. 8 reveal that FrameFlip exhibits better
attack performance than DeepHammer and Bit-Flip attack.

Consider that flipping a vulnerable bit by Rowhammer is
time-consuming. In addition, there are some hardware con-
straints caused by the memory layout of hardware specifica-
tions when flipping multiple bits simultaneously. Thus, we
further compare the attack cost of the three attacks. The attack
cost is defined as the number of bits that need to be flipped in
a given attack.

Fig. 9 demonstrates the minimum number of bits required
to be flipped by the three attacks. FrameFlip always needs 1
bit to be flipped when conducting its attack. In comparison,
for the ImageNet dataset, DeepHammer needs 23 bits flipped
simultaneously to complete an attack. The number for the Bit-
Flip attack is 11. For the CIFAR-10 dataset, Bit-Flip attack
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Table 3: The vulnerable instructions that reach top-3 attack performance on different datasets and networks.

Datasets Networks Top-1 PRL(%) Instructions Top-2 PRL(%) Instructions Top-3 PRL(%) Instructions

ImageNet
VGG-16 100.00 8~19 - - - -

ResNet-34 100.00 5~8, 10 ~19 99.65 9 - -
ResNet-50 100.00 5, 8~15, 17 ~19 99.80 6 - -

GTSRB
VGG-16 99.23 5, 10~19 94.60 9 94.08 8

ResNet-34 99.25 5, 10~19 96.14 6 94.79 7
ResNet-50 98.75 5, 10~19 98.60 6 94.73 8, 9

CIFAR-10
VGG-16 89.19 5, 8~19 - - - -

ResNet-34 89.32 30 88.73 5, 7, 8, 10~19, 74, 75, 79, 82 79.92 6
ResNet-50 88.80 5, 8~19 87.29 30 72.24 34

FMNIST LeNet 92.66 6 88.75 8~19, 28, 29, 33, 34, 36, 74, 75, 79, 82 88.70 30

ResNet-34 ResNet-50
Model Architectures

0

5

10

15

20

25

30

35

M
in

. #
 o

f B
it-

fli
ps

1

23

11

1

23

11

Ours
DeepHammer
Bit-Flip Attack

(a) ImageNet

VGG-16
Model Architectures

0

5

10

15

20

25

30

35

M
in

. #
 o

f B
it-

fli
ps

1

13

20

Ours
DeepHammer
Bit-Flip Attack

(b) CIFAR-10

Figure 9: The minimum number of bit-flips required by
three attacks.

and DeepHammer need 20 and 13 bits to be flipped respec-
tively. Thus, FrameFlip incurs the lowest attack cost. Note that
the attacks being compared have not yet been demonstrated
through end-to-end implementations. This is potentially due
to the difficulty in concurrently flipping their multiple re-
quired bits through Rowhammer.

6.4 Existing Fault Injection Defense
In this subsection, we evaluate the effectiveness of Frame-
Flip in circumventing existing defense techniques that aim to
protect DNN models against fault injection attacks. A popu-
lar software-based fault injection defense technique is Deep-
Dyve [42]. This method involves utilizing a simplified and
smaller DNN (known as the checker DNN) to approximate
the output of the original complicated DNN model (known
as the task DNN). Subsequently, the approach verifies the
consistency of the outputs between the two models in an end-
to-end manner. If the outputs of the checker model and the
task model do not match, re-computation on the task DNN is
performed for potential fault recovery.

DeepDyve has three metrics to measure the detection per-
formance for fault injections. These include i) the false posi-
tive rate (FPR), ii) the false negative rate (FNR), and iii) the
fault coverage (FC). FC denotes the rate of detected faults
against all faults. We evaluate the effectiveness of FrameFlip
against DeepDvye. The results are reported in Tab. 4. The
dataset and network are GTSRB and ResNet-34 respectively.

DeepDyve first creates a simple checker model based on
the original complicated DNN task model. Then, it compares

Table 4: The defense performance of DeepDyve.

Fault Injections FPR (%) FNR (%) FC (%)

Ours 99.42 4.48 95.52
Bit-Flip Attack 0.00 0.79 99.21

Random Fault Attack 0.00 5.07 94.93

the inference consistency of both models for attack detection.
As shown in Tab. 4, the FPR of DeepDyve against our Frame-
Flip is up to 99.42%, which reveals that DeepDyve outputs
almost all predictions as the faults and thus is not capable of
defending our fault injection attack. The reason is that Frame-
Flip targets the code level, and simultaneously corrupts both
the task model and the checker model. As such, the outputs
of the two models are unlikely to be consistent, resulting in
a high FPR of DeepDyve. This shows that DeepDyve has
lost its functionality under FrameFlip, as the checker model
can no longer verify the output of the task model, making
DeepDyve is ineffective against FrameFlip.

7 Discussion

7.1 Countermeasures

In this section, we investigate the mitigation strategies from
an attack chain perspective.
Mitigating Rowhammer. A number of countermeasures
have been proposed to mitigate Rowhammer attacks includ-
ing hardware-based, software-based, and software-hardware
co-design approaches [73]. Hardware-based defenses [46,
47, 49] necessitate modifications to the underlying hard-
ware, including the memory controller and/or DRAM, making
them unable to be backported. In contrast, software-based
defenses [4, 10, 72] mainly exploit the specific characteris-
tics of Rowhammer to detect associated attacks. Therefore,
they are compatible with legacy DRAM modules. In recent
hardware-software co-design defense [34], DRAM and mem-
ory controller are modified to detect bit flips, and the proposed
instruction-set extension is used to correct flipped bits by OS.
Thwarting Memory Waylaying. Memory waylaying allows
the attacker to precisely manipulate the memory allocation.
This technique is crucial for an attacker to mount our attack.
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To thwart this primitive, the OS can monitor the abnormal
activities of page-cache pages and restrict the allocation of
excessive page cache pages in a single process [24].
Protecting critical instructions. Selective protection of the
most vulnerable bits through system software can effectively
mitigate our attack. Specifically, by utilizing the proposed Au-
toVIS, the vulnerable instructions that significantly degrade
DNN accuracy can be identified and subsequently protected
by a secure enclave (e.g., Intel SGX [18, 24]). Additionally,
compilers could generate code for those critical instructions
that ensure an attacker needs a minimum of N bit flips to
manipulate the control flow successfully [7, 13, 24]).

7.2 Generality of AutoVIS
In the offline phase, AutoVIS employs the opcode flipping
primitive to modify each branch logic of a function in the
linear algebra library and then records the inference accuracy
of a DNN that uses a modified library. To investigate its gener-
ality, we choose FBGEMM (Facebook GEneral Matrix Multi-
plication), a library that specializes in low-precision and high-
performance matrix-matrix multiplications for server-side
inference, to serve as a backend of PyTorch on x86 machines.
In particular, the function fbgemmPacked in FBGEMM is a
good candidate, as it provides the same functionality as the
aforementioned cblas_dgemm function from the OpenBLAS
library, i.e., both provide low-level matrix-matrix multiplica-
tion that has been optimized to fit for modern CPU cache hier-
archy [23]. The most vulnerable bit within the fbgemmPacked
function can be identified by AutoVIS, which we believe can
achieve significant accuracy degradation.

7.3 Limitations
FrameFlip is currently applicable to models executed on
CPUs and UNIX/Linux systems. For other BLAS operations
on a GPU (e.g., by utilizing cuBLAS), the feasibility of our
approach has not been explored, as the Rowhammer exploita-
tion relies on Rowhammer bugs (specific to DRAM) and
memory waylaying. Particularly, memory waylaying exploits
OS’s memory management feature, i.e., page-cache, making
itself specific to general CPUs. Thus, FrameFlip affects CPU-
based inference that is supported by cloud providers such as
Amazon, Google and Alibaba Clouds.

Static linking links related library functions directly into a
victim’s binary, and thus the linked functions cannot be called
by other binaries. Consequently, FrameFlip is unlikely to find
the exact physical locations of vulnerable bits in library func-
tions and instead might cause the victim to crash. However,
static linking generates large-size binaries and dynamic link-
ing produces small-size binaries. Thus, developers are likely
to use dynamic linking in practice to distribute their models.

Besides the accuracy depletion of classification models,
FrameFlip can be used to flip other critical bits (e.g., those
that control the number of iterations), resulting in significantly

prolonged execution time for DNN inference. In addition to
the image classification, we will also explore other tasks in
the future work, such as object detection and natural language
processing (NLP).

8 Related Work

In the context of DNNs, fault injections are used to directly
tamper with the DNN inference process. Primarily, compro-
mised DNN weight parameters result in two types of at-
tack: utility degradation and Trojan attacks. For utility degra-
dation, Liu et al. [44] present a simulated fault attack that
is aimed at disrupting DNN prediction by flipping model
bias parameters. DeepLaser [11] demonstrates a laser-based
fault injection technique that hijacks DNN activation func-
tion. Hong et al. [29] conduct bit flip attacks against various
model parameters in full-precision DNN models. As for Tro-
jan attacks, Rakin et al. [54] insert a targeted Trojan into a
DNN through the bit-flip. However, this work does not con-
sider realistic restrictions in hardware. Tol et al. [60] and
Chen et al. [12] have proposed incorporating hardware speci-
fications as constraints during trigger pattern generation and
backdoor injection.

To defend against weight-based fault injections in the con-
text of DNNs, several works have been proposed. Aegis [62]
is a multi-exit mechanism that allows input samples to exit
early from different layers of DNN models in order to disrupt
the attackers’ plans. He et al. [28] adopt binarization-aware
training to defend against bit-flipping attacks. Li et al. [39]
propose a checksum-based detection technique during model
inference. During inference, the checksum of the weights is
validated against the original signatures.

Nevertheless, all the above attacks and defenses focus on
the weight parameters of DNNs instead of other software and
hardware platforms of ML services. Bagdasaryan et al. [5]
compromise ML training code before the training starts. Clif-
ford et al. [16] insert imperceptible backdoors by a malicious
compiler during compilation. These studies reveal that en-
suring the security of ML models necessitates examining all
components within the pipeline including the data, model
architecture, compiler, and hardware specification.

9 Conclusion

We have proposed FrameFlip, a novel hardware-based fault
injection attack on machine learning (ML) codebases that can
universally and significantly reduce DNN models’ prediction
accuracy to a random guess level. The impact of this work
is the search for vulnerable instructions in ML codebases,
highlighting the importance of increased attention to secu-
rity analysis for ML codebases. Extensive experiments have
demonstrated the pronounced susceptibility of ML codebases
to malicious bit-flips even with a single bit fault.
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