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Preface

Millimeter-wave (mmWave) communication at 30 GHz-300 GHz frequency bands
has emerged as one of the most promising technologies in future wireless networks,
which can offer high data rate connections by exploiting a large swath of spectrum.
The mmWave communication can support many data-intensive wireless applica-
tions, ranging from high-definition mobile video streaming, cordless virtual reality
gaming, to wireless fiber-to-home access. Particularly, the current IEEE 802.11ad
standard can provide a data rate up to 6.75 Gbps, and its successor IEEE 802.11ay
can even support up to 40 Gbps. In mmWave communications, beamforming fo-
cusing the radio frequency power in a narrow direction is the key technology to
overcome the hostile path loss. However, the distinct high directionality feature of
beamforming technology poses many challenges in different network layers: (1)
Beam alignment (BA) latency in the physical layer, which is the processing delay
that both the transmitter and receiver take to align their beams to establish a reliable
connection. Existing BA methods incur significant latency on the order of seconds
for a large number of beams; (2) Medium access control (MAC) performance degra-
dation. To coordinate the beamforming training (BFT) for multiple users, 802.11ad
standard specifies an MAC protocol, i.e., BFT-MAC protocol, in which all the users
contend for BFT resources in a distributed manner. Due to the “deafness” problem
caused by directional transmission, i.e., a user may not sense the transmission of
other users, severe collisions occur in high user density scenarios, which significantly
degrades the MAC performance; and (3) Backhaul congestion in the network layer.
All the base stations (BSs) in mmWave networks are connected to the backbone
network via backhaul links to access remote content servers. Although beamforming
can increase the data rate of the fronthaul links between users and BSs, the congested
backhaul link becomes a new bottleneck for mmWave networks.

In this monograph, we design novel beamforming technologies for low-latency
and cost-effective mmWave networks and analyze their performance. Specifically, we
focus on addressing the above challenges respectively by (1) presenting an efficient
BA algorithm; (2) evaluating and enhancing the 802.11ad MAC performance; and
(3) designing an effective backhaul alleviation scheme. In Chapter 1, we introduce
mmWave communications, including its definition, potential applications, recent de-
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velopment, and technical challenges, etc. In Chapter 2, we review the characteristics
of mmWave communications, the state-of-the-art beamforming technologies, and
the beamforming training protocol in 802.11ad. In Chapter 3, to reduce BA latency,
we present a learning-based efficient BA algorithm, namely HBA. The presented
algorithm leverages the correlation structure among beams and the prior knowledge
on the channel fluctuation to significantly reduce BA latency from hundreds of mil-
liseconds to a few milliseconds. In Chapter 4, to enhance the MAC performance, we
present an analytical model for the BFT-MAC protocol in 802.11ad and then intro-
duce an enhancement scheme to optimize its performance. In addition, to support
multiuser transmission, we design a novel 802.11ad-compliant multiuser beamform-
ing training protocol to reduce beamforming training overhead. In Chapter 5, to
alleviate the backhaul congestion, we present a device-to-device assisted coopera-
tive edge caching scheme that jointly utilizes cache resources of users and BSs. We
theoretically analyze the performance of the introduced scheme, taking the network
density, the practical directional antenna model and the stochastic information of
network topology into consideration. The presented scheme can effectively reduce
backhaul traffic and content retrieval delay. At last, we conclude this monograph and
discuss some important future research directions in Chapter 6.

We hope this monograph can provide insightful lights on understanding the
fundamental performance of mmWave networks from the perspectives of different
network layers, including BA, MAC, and backhaul. The systematic principle in this
monograph also offers valuable guidance on the establishment and optimization of
future mmWave networks.
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Chapter 1
Introduction

Abstract The millimeter-wave (mmWave) network expects to be an effective solution
to provide high data rate services for mobile users in future wireless networks via
leveraging large chunks of spectrum. To well support a large number of mobile users,
low-latency and cost-effective schemes should be designed in practical mmWave
systems. However, due to the adoption of beamforming technologies, the inherent
high directionality feature incurs many new challenges for mmWave networks at
different network layers, including the physical layer (i.e., how to align beams with
a low latency), the medium access control layer (i.e., how to reduce collisions
in the beamforming training protocol and how to design multiuser beamforming
training protocol), and the network layer (i.e., how to reduce content retrieval delay in
backhaul congested mmWave dense networks). In this chapter, we first overview the
mmWave network and then briefly introduce the recent important industry progress,
research projects, and standardization efforts. Finally, we highlight the technical
challenges in mmWave networks, followed by the aim of the monograph.

1.1 mmWave Communication

1.1.1 Motivation of mmWave Communication

Recently, we have been witnessed the breath-taking progress of advanced technolo-
gies in consumer electronic devices and the surge of a number of data-intensive
applications, ranging from panoramic video streaming, big data analytics, wireless
fiber-to-home access, cordless virtual reality (VR), to mobile augmented reality
(AR) gaming [1]. These emerging applications provide people with ubiquitous high-
quality multimedia content. It is reported that HTC has sold more than 15,000 VR
headsets just in ten minutes on its first release. Another report shows that the world-
wide shipment of AR/VR devices reached 9 million in 2019 [2]. These advanced
devices and the corresponding data-intensive applications are expected to push a
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2 1 Introduction

significant growth of data volume in wireless networks. As predicted, the monthly
global mobile data traffic is expected to have a twelve-fold increase in the next five
years [3].

Traditional wireless networks that operate in the congested microwave frequency
bands (i.e., below 6 GHz) face a severe spectrum scarcity issue, especially at peak
hours. It is difficult to satisfy the surging demand of mobile data traffic purely relying
on traditional wireless networks. To address this issue, i.e., supporting these data-
intensive applications, it is necessary that wireless networks should deliver a multiple
gigabit data rate [4]. Such a requirement is unquestionably beyond the capability of
traditional wireless networks, even if high spectrum efficiency techniques are utilized
regardless of their complexity. Therefore, to meet the requirement, more spectrum
is needed in future wireless networks.

1.1.2 Concept and Applications

High frequency band communication has garnered great attention from both
academia and industry due to the spectrum scarcity issue in wireless communi-
cation. In particular, communication at ranging from 30 GHz to 300 GHz frequency
bands, whose wavelength ranges from 1 mm to 10 mm, becomes the focus. This
range of frequency bands is often referred to as millimeter-wave (mmWave) com-
munication, which is in possession of a large swath of spectrum. Based on federal
communications commission (FCC) regulations, more than 20 GHz of spectrum
are available at the mmWave frequency band. The amount of spectrum is 20 times
more than that allocated to both current WiFi and cellular systems. Leveraging such
abundant spectrum, mmWave communication can provide a multiple gigabit data
rate. Hence, mmWave communication is one of the key enabling technologies in the
advanced wireless networks, such as the fifth-generation (5G) networks [5–8] and is
expected to continue playing an important role in the coming 6G networks [9–12].

Due to the benefit of high data rate, mmWave communications can support nu-
merous potential data-hungry applications. (1) Supporting infotainment applications
is an important use case, in which mmWave communication can enhance the quality
of experience (QoE) of mobile users. For instance, mobile users can enjoy high
quality VR/AR gaming, or watch real-time ultra high definition videos through
mmWave communication; (2) From the perspective of network operators, mmWave
communication can be an enabling technology for wireless backhaul in ultra-dense
networks (UDNs) and emerging drone networks. In UDNs, backhaul links need to
offer a data rate up to 10 Gbps to provide reliable connections [13]. The deployment
cost of high-speed wired backhaul links is high. As such, mmWave communication
is a cost-effective solution for the UDNs. Similar to that in the UDNs, mmWave
communication is also considered as the underlying wireless backhaul technology
in drone networks; (3) In addition to the above wireless backhaul applications,
mmWave communication can also be applied to solve the issue of last mile optical
fiber replacement. Recently, the emerging fixed wireless access technology which
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utilizes mmWave communication to provide broadband Internet access to customers,
seems plausible. This scheme can avoid the costly and time-consuming deployment
of optical fiber networks [14]; and (4) mmWave communication can be applied in
high-mobility scenarios. For example, it can be used as the access network of high-
speed railways to support a large number of users in the train [15]. Also, mmWave
communication can be employed in vehicular networks, which can not only offer
high-speed vehicle to everything communications [16, 17], but also sense moving
objects in nearby environment for safety driving owing to its short signal wave-
length [18]. To summarize, mmWave communication can facilitate a large number
of high-speed data services for wireless networks in a cost-effective manner.

1.1.3 Development of mmWave Communication

The earliest concept of mmWave communication can be traced back to more than
one hundred years ago. In 1897, Bose conducted the first mmWave experiment with a
wavelength of 5 mm [19]. While in the following century, mmWave communication
was deemed unsuitable for wireless communications. The reason is three-fold: (1)
As compared to signal propagation at the microwave band, signal propagation at
mmWave frequency bands suffers from significant path loss; (2) Due to weak reflec-
tion characteristics, the mmWave channel is relatively sparse. The insufficiency of
available paths limits the coverage of mmWave networks; and (3) mmWave signals
with a short signal wavelength suffers from huge penetration loss, and hence they
are extremely vulnerable to blockage. The above hostile transmission characteristics
significantly hinder the development of mmWave communication in the past century.

With the recent progress of advanced hardware circuit, wireless communi-
cation, and signal processing technology, mmWave communication is no longer
conceptual nowadays. Utilizing advanced low-power complementary metal-oxide-
semiconductor (CMOS) radio frequency (RF) circuits technologies and the small
wavelength of mmWave signals, a large number of antennas (e.g., 32 antenna el-
ements) are packed into an antenna array of a compact size, thereby addressing
the huge path loss issue. These compact yet energy-efficient antenna arrays can
be fabricated in a small chip, which facilitate light-weight and long-life mmWave
communication at mobile devices. The antenna array can provide high directional
antenna gain, namely beamforming. In specific, beamforming acts as a “focusing
lens”. It can focus RF energy towards a narrow direction to enhance the received
signal-to-noise ratio (SNR) at mmWave frequency bands. For instance, theoretical
analysis shows that an antenna array with 32 antenna elements can provide around
15 dB antenna gain. The antenna array at large-space and energy-abundant BSs can
even adopt a larger number of antennas, such as 256 or 1024 antenna elements, to
provide a higher antenna gain. Thus, with the beamforming technology, the issue of
the path loss can be addressed in mmWave communication.

To promote mmWave communication, extensive research works in academia are
conducted, including studying mmWave network performance [20], designing novel
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efficient beamforming technologies [21, 22], and enhancing network performance
from perspectives of different network layers, ranging from the physical layer, the
medium access control (MAC) layer, to the network layer. In addition, there are also
extensive efforts from the industry, which are introduced in details in the following
section.

1.2 Industry Progress, Projects, and Standardization

Extensive efforts from industry are devoted to large-scale in-field tests and standard-
ization to pave the way for commercialization of mmWave communications. Recent
progress, research projects, and existing standards are reviewed as follows.

1.2.1 Industry Progress

Since mmWave communication is still at the infancy stage, network operators and
vendors perform extensive large-scale field-trials to evaluate the performance of
mmWave communication at different frequency bands under various settings. It is
reported that Samsung conducted the first mmWave mobile communication exper-
iment in 2013.1 The achieved data rate is up to 1 Gbps. Other network operators,
i.e., T-mobile and Version, test mmWave communication at 28 and 39 GHz bands
with the permission of FCC. In another experiment joint performed by Nokia and
National Instrument, the achieved data rate is up to 15 Gbps at the 73 GHz band.
Huawei also performs an experiment at mmWave frequency bands, i.e., the Ka band
from 26.5 GHz to 40 GHz. The experimental results show a 20 Gbps access rate
for mobile users. Another experiment by DOCOMO and Ericsson at the 70 GHz
band shows that the data rate can reach 4.5 Gbps and 2 Gbps in outdoor and indoor
scenarios, respectively. The above field-trials validate that mmWave communication
is able to offer high-speed data transmission.

In addition, numerous measurements on channel conditions and network cover-
age have been conducted by standard bodies, such as the 3rd generation partnership
project (3GPP) and WiFi Alliance. Several 3GPP working groups have constructed
empirical channel models for mmWave communication based on extensive mea-
surement data in different scenarios. Some research groups also conduct important
measurements in some use cases, such as urban communication scenarios. We know
that mmWave communication would suffer from significant penetration loss in dense
urban scenarios. This is because the dense buildings may result in a coverage concern
of mmWave networks. To validate the feasibility of mmWave networks, extensive
experiments are conducted by the NYU WIRELESS research group in New York
City at both 28 GHz and 38 GHz bands. The measurement takes signal penetration

1 Online: https://news.samsung.com/global/samsung-announces-worlds-first-5g-mmwave-mobile-
technology.
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and reflection characteristics at the buildings into consideration. The measurement
results show that, even in a dense urban environment with a low-power base station
(BS), the mmWave networks still have a coverage up to 200 meters [23].

1.2.2 Research Projects

To further push the development of mmWave mobile networks, industry and gov-
ernment institutions all over the world have launched multiple research projects on
mmWave networks. For example, a joint project by European union (EU) and Japan,
named “MiWEBA”,2 aims at the mmWave evolution for backhaul and access net-
works. Other projects, such as “MiWaves”3 and “mmMAGIC”,4 are also launched
by EU to push the development of mmWave communication. Not surprisingly, other
countries, such as China and America, have invested hundreds of millions of dollars
on mmWave communication research and implementation [24]. Chinese govern-
ments have launched a few key research projects on studying mobile mmWave
networks and designing corresponding RF chips. Leading technology companies in
the industry, such as Google, Facebook, and Huawei, also put extensive efforts into
this topic. For example, Google has tested 71-76 GHz and 81-86 GHz frequency
bands for potential wireless backhaul applications.

1.2.3 Standardization

Standardization efforts are also made for the commercialization of mmWave com-
munication with the focus on both unlicensed and licensed bands, and a number of
standard-compliant products hit the market in recent years.

1.2.3.1 Standards at the Unlicensed Bands

In recent years, multiple standards have been ratified for diverse applications by differ-
ent standard groups at the unlicensed 57-64 GHz bands, often referred to as the unli-
censed 60 GHz band in the literature. These standards include: WirelessHD for video
area networks,5 IEEE 802.15.3c for wireless personal area networks (WPANs) [25],
IEEE 802.11ad (refers to 802.11ad for short hereinafter) for wireless local area net-
works (WLANs) [26], and 802.11ad’s successor IEEE 802.11ay [27]. We introduce
these standards as follows:

2 MiWEBA: http://www.miweba.eu/.
3 MiWaves: http://www.miwaves.eu/.
4 mmMAGIC: https://5g-mmmagic.eu/.
5 WirelessHD: https://en.wikipedia.org/wiki/WirelessHD.
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• WirelessHD: Silicon image consortium develops WirelessHD to provide high-
definition video transmission via short-range mmWave communication. The
achievable data rate is up to 4 Gbps. Such a data rate can support common
3D formats and 4K resolution video transmission;

• IEEE 802.15.3c: The standard is designed to provide mmWave communication for
the existing 802.15.3 WPANs. The standard can deliver a data rate up to 2 Gbps for
supporting data-hungry applications, such as high definition TV video streaming
and wireless data bus for cable replacement;

• IEEE 802.11ad: The standard was developed in the former WiGig consortium
that was later absorbed into the WiFi Alliance in 2012. In 802.11ad, nearly 7 GHz
spectrum at the unlicensed 60 GHz band can be leveraged to provide a data rate
up to 6.75 Gbps with a channel bandwidth of 2.16 GHz. FCC released extra
7 GHz unlicensed spectrum at the 64-71 GHz band to further promote 802.11ad
in 2016. The new released spectrum doubles the amount of available spectrum
in 802.11ad. In this way, 802.11ad can occupy at most six channels, thereby
supporting more users and providing a higher data rate;

• IEEE 802.11ay: Seeing the great success of 802.11ad, IEEE standardization
group is developing the next generation standard for mmWave WLANs, named
802.11ay. Compared with 802.11ad, numerous distinguished technologies, such
as channel bonding, channel aggregation, and multiuser transmission, would be
incorporated in 802.11ay [28, 29], which can significantly increase data rate up
to 40 Gbps. The draft version of 802.11ay debut in 2019. For more details on the
802.11ay, the readers are referred to a comprehensive survey in [30].

1.2.3.2 Standards at the Licensed Bands

Standardization activities at the licensed band are led by 5G-related forums and
organizations. The 5G networks support three typical use cases: (i) enhanced mobile
broadband (eMBB) that requires extremely high data rates, (ii) massive machine type
communications (mMTC) that requires massive connectivity in Internet of things
(IoT), and (iii) ultra reliable low latency communication (URLLC) that focuses on
applications with stringent latency and reliability requirements [5]. The peak data
rate in the eMBB use case is up to10 Gbps. To satisfy this requirement, mmWave
communication is unquestionably the most promising technology. To bring mmWave
visions to commercialization, the 3GPP working group has standardized mmWave
communication as a 5G new radio interface in Release 15. The mmWave commu-
nication would continue evolving in the subsequent releases, including 5G beyond
and the 6G networks.

1.2.3.3 Commercial Products

Many standard-compliant commercial off-the-shelf (COTS) products hit the market
in recent years. WirelessHD-compliant products have been available for years. For
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Table 1.1: Comparison between 802.11ac-based WiFi and 802.11ad-based mmWave
communication.

Metric WiFi (802.11ac) mmWave communication (802.11ad)
Bandwidth 160 MHz 2.16 GHz

Peak data rate 500 Mbit/s 6.75 Gbps
Carrier frequency 5 GHz 60 GHz

Path loss Medium Severe
Number of antennas 1-8 16-32

Antenna directionality Omni-directional Directional

802.11ad, building on the successful 2.4/5 GHz WiFi systems, it achieved significant
success in the past years. Many COTS products are designed based on 802.11ad.
Very recently, a group of companies, such as Wilocity, Tensorcom, Netgear, and
Nitero [31] can offer 802.11ad capable chips. For instance, two 802.11ad capable
routers hit the market, i.e., Netgear Nighthawk X10 and TP-Link Talon AD7200 [32].
As reported by the ABI research [33], the market of mmWave WLAN is booming,
and more than 600 million 802.11ad-compliant WiFi chips has been shipped in 2020.
The on-going standardization of 802.11ay can further promote the development of
mmWave communication in WLANs.

Based on existing standards, we compare the common WiFi technology (state-
of-the-art 802.11ac) and mmWave communication (802.11ad) to have a better un-
derstanding of mmWave communication. The detailed comparison is presented in
Table 1.1. Compared with WiFi, mmWave communication possesses multiple GHz
bandwidth, and hence it can achieve a higher data rate than WiFi. The peak data
rate of mmWave communication is nearly 7 Gbps. In addition, unlike WiFi operates
in the microwave band, i.e., 5 GHz band, mmWave communication operates in the
60 GHz band. Due to operating at a high frequency band, the path loss in mmWave
communication is severe. Thus, to compensate the path loss, a large number of
antennas are equipped to form directional antennas in mmWave communication.
The directional antenna is the main difference between WiFi and mmWave com-
munication, which significantly impacts scheme design and performance analysis in
mmWave communication.

1.3 Research Challenges in mmWave Networks

Beamforming that focuses the radio frequency power in a narrow direction, is the key
technology in mmWave communication to overcome the hostile path loss. The high
directionality feature brought by beamforming poses new research challenges on
mmWave networks from perspectives of different network layers, including physical
layer, MAC layer, and network layer, which are detailed as follows.
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N directions

N

Transmitter (BS)Receiver (user)

Fig. 1.1: An illustration of beam alignment in the physical layer, which aims to
identify the optimal beam pair between the transmitter and the receiver among a
number of beam combinations.

1.3.1 Physical Layer

Due to the high directionality feature endowed by beamforming, both the transmitter
and the receiver need to accurately align their beams to establish a reliable commu-
nication link in the physical layer, i.e., beam alignment.6 As an illustrative example
shown in Fig. 1.1, a beam alignment process is required to establish a reliable com-
munication link between users and the BS. Even with slight beam misalignment,
link budget can be dramatically reduced, and the throughput can drop from multiple
gigabits to a few hundred megabits [34]. Therefore, beam alignment is a key process
for achieving high-speed data transmission in mmWave networks.

The objective of beam alignment is to identify the optimal transmit-receive beam
pair among all possible beam combinations. However, existing methods, including
that in 802.11ad, have to search the entire beam space until the optimal transmit-
receive beam pair is identified. These methods incur significant beam alignment
latency, which can be at the order of seconds when the number of beams is large.
Hence, it is desired to have an efficient beam alignment algorithm without searching
the entire beam space which can be applied in practical mmWave networks.

1.3.2 MAC Layer

In the MAC layer, beamforming training is a challenging issue. Beamforming training
should be performed for all the users to associate to the mmWave network. The

6 In our monograph, the terminology “beam alignment” is used in the physical layer, while the ter-
minology “beamforming training” is used in the MAC layer since 802.11ad adopts the terminology
“beamforming training”.
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Access point StationBeam

…

Fig. 1.2: The illustration of beamforming training in the MAC layer, in which all
users contend for the limited beamforming training opportunities.

beamforming training is operated under the coordination of a BS or an access point
(AP), as shown in Fig. 1.2. To carry out beamforming training for multiple users
in the mmWave network, 802.11ad specifies a distributed beamforming training
MAC protocol, namely BFT-MAC. In the protocol, each user performs beamforming
training in a contention and backoff manner. Due to the high directionality feature
in mmWave communication, a “deafness” problem is incurred, in which a user may
not sense the transmission of other users. As such, severe transmission collisions
would occur in high user density scenarios. Thus, it is paramount to analyze the
performance of BFT-MAC, such that MAC parameters can be optimally configured
to optimize MAC performance.

The BFT-MAC protocol is distinct from traditional MAC protocols with carrier
sensing mechanisms (e.g., [35,36]) due to the adoption of directional antennas. A new
analytical model is desired for the BFT-MAC protocol. Moreover, it is imperative
to enhance the MAC performance in high user density scenarios, in which the
severe performance degradation occurs due to significant transmission collisions. In
addition, since multiuser transmission would be a key feature technology in future
mmWave communication, designing a beamforming training protocol for supporting
multiuser transmission is desired, namely multiuser beamforming training protocol.
Also, the designed protocol should be compliant with the current 802.11ad standard
for feasibility consideration.

1.3.3 Network Layer

In the network layer, a backhaul congestion issue should be addressed, especially in
mmWave dense networks. As shown in Fig. 1.3, backhaul links between BSs and
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Fig. 1.3: The illustration of backhaul congestion in the network layer, in which
network performance would degrade with congested backhaul links.

backbone networks are relatively congested in mmWave dense networks [37]. This
is due to the prohibitive high deployment cost of ultra high-speed wired backhaul
links. Although high data rate mmWave communication can significantly enhance
the fronthaul links between users and BSs, the congested backhaul links become the
bottleneck of the entire mmWave networks from the perspective of the network layer.
The issue would further degrade the network performance with the increase of the
densification of mmWave networks. Therefore, it is necessary to develop an effective
solution to alleviate backhaul congestion for mmWave network deployment.

1.4 Aim of the Monograph

This monograph aims to design low-latency and cost-effective schemes to enhance
mmWave network performance from the perspectives of different network layers,
including the physical layer, the MAC layer, and the network layer.

Firstly, in Chapter 2, we present a comprehensive survey to elaborate the unique
features of mmWave networks. Then, we elaborate different types of beamforming
technologies. The beamforming training protocol in the celebrated 802.11ad standard
is introduced in detail. Next, some preliminaries on a specific machine learning
method, i.e., multi-armed bandit (MAB), is introduced since it is adopted to address
the beam alignment issue.
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Secondly, in Chapter 3, to address the beam alignment challenge in the physical
layer, we present a fast beam alignment algorithm, namely hierarchical beam align-
ment (HBA) algorithm [38]. This algorithm can significantly reduce beam alignment
latency. Specifically, the beam alignment problem is formulated as a stochastic MAB
problem, with the objective of maximizing the cumulative received signal strength
(RSS) within a certain time period. To solve the problem, the presented HBA algo-
rithm takes advantage of the correlation structure among nearby beams. As such, the
information from nearby beams is extracted to identify the optimal beam, thereby
avoiding searching the entire beam space and reducing beam alignment latency. In
addition, the presented algorithm incorporates the prior knowledge on the channel
fluctuation, which can further accelerate the beam alignment process. We conduct
theoretical analysis, which indicates that the presented algorithm is asymptotically
optimal. Extensive simulations based on 802.11ad in the multipath channel scenarios
are provided. The results demonstrate that the presented algorithm can identify the
optimal beam with an extremely high probability. As compared to the existing beam
alignment algorithms in 802.11ad, the presented algorithm can reduce the beam
alignment latency from hundreds of milliseconds to a few milliseconds.

Thirdly, in Chapter 4, to address the beamforming training challenge in the MAC
layer, we first analyze the BFT-MAC protocol performance in 802.11ad. Based on
theoretical analysis, we then present an enhancement scheme for high user density
scenarios [39,40]. Specifically, a simple yet accurate analytical model is presented for
characterizing the BFT-MAC protocol behaviour. In the presented analytical model,
we incorporate the user density into the modeling of the BFT-MAC protocol. The
presented analytical model can unveil the impact of user density and MAC param-
eters on the MAC performance. Based on our analytical model, we further derive
the closed-form expressions of multiple network performance metrics, including
average successful beamforming training probability, the normalized throughput,
and the beamforming training latency. Through asymptotic analysis, the maximum
normalized throughput of BFT-MAC is proved to be barely 1/𝑒. The throughput is
the same as that of slotted ALOHA protocol. Moreover, in dense user scenarios,
due to the mismatch between the number of active users and available beamform-
ing training resources, network throughput suffers from great degradation. Next, to
solve the issue, we introduce an enhancement scheme which adaptively adjusts the
MAC parameters in tune with user density. Extensive simulation are conducted, and
the results show that the presented analytical model is accurate, and this enhance-
ment scheme is effective in dense user scenarios. Second, multiuser transmission
can greatly increase data rate in mmWave networks, which is expected to be a key
enabling technology in the on-going 802.11ay standard. Designing a beamforming
training protocol for multiuser transmission, i.e., multiuser beamforming training
protocol, is needed. We introduce a novel protocol based on the hybrid beamform-
ing algorithm [41]. This protocol is compliant with the current 802.11ad standard,
which indicates its feasibility. In addition, we analyze the protocol overhead, and
simulations are conducted to validate the effectiveness of this protocol.

Fourthly, in Chapter 5, to address the backhaul congestion challenge in the net-
work layer, we adopt edge caching as a potential solution [42–44]. Edge caching
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proactively caches popular contents in nearby small base stations (SBSs), which can
effectively alleviate the backhaul congestion in mmWave dense networks. However,
cache resources of individual SBSs are constrained, thereby significantly throttling
edge caching performance. To address this issue, we present a cooperative edge
caching scheme, namely device-to-device (D2D) assisted cooperative edge caching
(DCEC) [45]. The presented scheme cooperatively utilizes the cache resource of
users and SBSs in proximity. Specifically, in DCEC, a popular content can be cached
in either users or SBSs according to the content popularity. Then, users can request
contents either from their neighbouring users via high-rate D2D links or the neigh-
bouring SBSs via mmWave cellular links. As such, the cache diversity is efficiently
exploited. The existing cooperative caching schemes in the microwave frequency
bands require complex interference management techniques to suppress interference.
While in mmWave systems, we take advantage of directional antennas to ensure high
transmission rate while solving the interference issue. We derive closed-form expres-
sions of the backhaul offloading performance and content retrieval delay based on
the stochastic information of network topology, taking the practical directional an-
tenna model and network density into account. Furthermore, analytical results show
that content retrieval delay via D2D links increases significantly with the increase
of network density, while that via cellular links increases slightly. Comprehensive
simulation results validate the accuracy of our theoretical analysis. In addition, the
results demonstrate that the presented scheme can achieve significant performance
gains both in backhaul traffic offloading and content retrieval delay reduction, as
compared to the most popular caching benchmark.

Finally, in Chapter 6, we summarize this monograph and discuss potential future
research directions in mmWave networks, including beam alignment schemes in high
mobility scenarios, efficient QoS-aware MAC protocols, and anti-blockage methods.
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Chapter 2
Literature Review of mmWave Networks

Abstract As the mmWave network is expected to be a promising paradigm in future
wireless networks, in this chapter, we provide a comprehensive survey of mmWave
networks, especially focusing on the beamforming technology. Particularly, we re-
view mmWave networks in four sections: (1) characteristics of mmWave communica-
tion from multiple aspects, including bandwidth, path loss, channel sparsity, antenna
directionality, and blockage effect; (2) state-of-the-art beamforming technologies,
including analog beamforming, digital beamforming, and hybrid beamforming; (3)
current beamforming training protocol in the celebrated 802.11ad standard, includ-
ing detailed operations and their goals; and (4) multi-armed bandit theory, including
its definition and potential applications in mmWave networks.

2.1 Characteristics of mmWave Communication

In order to efficiently utilize mmWave frequency bands, the first and foremost thing
is to understand the mmWave communication characteristics. The mmWave commu-
nication has several unique characteristics as compared to the traditional microwave
communication, including large bandwidth, huge path loss, and sparse channel, di-
rectional antenna, and blockage effect. These propagation characteristics pose new
challenges for establishing reliable connections at mmWave frequency bands. In the
following, these propagation characteristics are introduced in detail.

2.1.1 Large Bandwidth

The first characteristic of mmWave communication is its large bandwidth. The
mmWave frequency band ranges from 30 GHz to 300 GHz has attracted much
attention from both industry and academia. This is because of the vast amount of
unexplored spectrum in the mmWave frequency band [1]. In specific, mmWave
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Fig. 2.1: The distribution of available spectrum at the mmWave frequency band.

frequency band possesses more than 20 GHz available spectrum, which consists of
1.4 GHz bandwidth at the 39 GHz band, 2.1 GHz bandwidth at the 37 GHz and
42 GHz bands, 7 GHz bandwidth at the 60 GHz band, and more than 10 GHz at the
E band1. The distribution of available spectrum is depicted in Fig. 2.1. The amount of
available spectrum is 20 times more than that allocated to today’s WiFi and cellular
networks. Moreover, if we turn to higher frequency bands (i.e., higher than 100 GHz),
more than 100 GHz unlicensed bandwidth is available for mmWave communication.
Those bands are expected to be utilized in advanced wireless networks, such as the
fifth generation (5G) and future 6G networks, to facilitate extremely high-speed data
transmission [2–5].

The large bandwidth contributes to high-speed data transmission. For example,
the peak physical rate in the current 802.11ad standard is up to 7 Gbps with a
bandwidth of 2.16 GHz [6]. Moreover, in practical systems, experimental results
show that the commercial 802.11ad devices are capable of supporting a data rate up
to 4.62 Gbps, while the state-of-the-art WiFi, i.e., 802.11ac, can only support a data
rate of 866.7 Mbps. The data rate of mmWave networks is much higher than that of
existing WiFi systems.

2.1.2 Huge Path Loss

The second characteristic is the significant path loss. We show huge path loss at
mmWave communication via simple mathematical calculation in the following.

We consider the ideal free space transmission case. In the case, the received power
can be characterized by the Friis law formula [7], i.e.,

1 The frequency bands at 71-76 GHz, 81-86 GHz, and 92-95 GHz, are collectively referred to as
E Band which are allocated for ultra-high-speed data communications by federal communications
commission (FCC) in 2003.
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Fig. 2.2: Antenna aperture comparison between mmWave communication and mi-
crowave communication. A mmWave antenna element captures less RF energy due
to a smaller aperture size than a microwave antenna element.

𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟

(
_

4𝜋

)2
𝑟−𝑛, (2.1)

where 𝑃𝑡 represents the transmit power, 𝑟 is the distance between the transmitter and
the receiver, _ is the wavelength of the carrier frequency, and 𝑛 denotes the path loss
exponent. Here, 𝐺𝑡 and 𝐺𝑟 represent the directional antenna gains of the transmitter
and the receiver, respectively.

Based on the above equation, we find that the wavelength of the carrier frequency
determines the received power. It is known that mmWave signal wavelength is
much smaller than microwave signal wavelength. Consequently, mmWave antenna
elements have a smaller aperture than microwave antenna elements, such that less
RF power can be captured by mmWave antenna elements, which is shown in Fig. 2.2.
Therefore, the path loss at the mmWave frequency band is much higher than that
at the microwave frequency band. If we consider the unlicensed 60 GHz band,
according to the above equation, mmWave communication would suffer from 28 dB
extra path loss as compared to that microwave communication at the 2.4 GHz band.
Moreover, mmWave communication suffers from higher noise power. This is because
mmWave communication has a larger bandwidth than microwave communication.
Taking mmWave communication at the 60 GHz band as an example, it possesses
2.16 GHz bandwidth for one channel, which gives 17 dB extra noise power than
microwave communication that only possesses 40 MHz bandwidth for one channel.
Overall, taking both the received power and noise power into consideration, mmWave
communication suffers from severe SNR loss (around 45 dB) compared with the
traditional microwave communication.

In addition to ideal free space transmission, rain attenuation and atmospheric
absorption introduce extra path loss for mmWave communication. The rain atten-
uation is around 7 dB/km in heavy rain scenarios, and the atmospheric absorption
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Table 2.1: Summary of path loss model parameters in different indoor scenarios.
Here, STA means station, LOS is line-of-sight, and NLOS is none-line-of-sight.

Scenario A (dB) n Standard deviation (dB)
Conference room with STA-STA LOS path 32.5 2.0 0

Conference room with STA-STA NLOS path 51.5 0.6 3.3
Conference room with STA-AP LOS path 32.5 2.0 0

Conference room with STA-AP NLOS path 45.5 1.4 3.0
Living room with LOS path 32.5 2.0 0

Living room with NLOS path 44.7 1.5 3.4
Cubicle environment with LOS path 32.5 2.0 0

Cubicle environment with NLOS path 44.2 1.8 1.5

is about 1 dB/km, based on extensive measurement results at the 28 GHz band [8].
For long-distance mmWave communication, such as wireless backhaul applications,
the impact of rain attenuation and atmospheric absorption on the path loss cannot
be neglected. However, in urban mobile scenarios, the impact of rain attenuation
and atmospheric absorption may be limited. The reason is that the typical radius of
mmWave networks is about a few hundred meters. It is worth noting that rain atten-
uation and atmospheric absorption vary with respect to different frequency bands.
For more details, one can refer to detailed in-field measurement results in [9].

With the above knowledge on the path loss, some path loss models are constructed.
Extensive efforts have been devoted to constructing accurate and practical path loss
models in various network environments at different frequency bands, especially
those potential frequency bands, such as 28 GHz, 38 GHz, 60 GHz, and 82 GHz.
Based on abundant measurement data, the 3rd generation partnership project (3GPP)
studying groups provide path loss models for both line-of-sight (LOS) and non-
line-of-sight (NLOS) paths. Other measurement campaigns are performed in some
specific scenarios, such as airport and high-density stadium [10]. For example, at the
unlicensed 60 GHz band, 802.11 consortium performs extensive measurements on
channels, and the derived path loss models in various scenarios can be found in [11].
Specifically, the path loss models are categorized based on indoor and outdoor
scenarios.

• Path loss model in indoor scenarios: At the initial deployment stage, mmWave
communication may focus on the indoor scenario. The 802.11ad studying group
has devoted much efforts on investigating path loss models for different applica-
tions. Based on these efforts, generally, the path loss model in indoor scenarios
is given by [11]

𝑃𝐿 (𝑑𝐵) = 𝐴 + 20 log10 ( 𝑓 ) + 10𝑛 log10 (𝑑) + b, (2.2)

where 𝐴 and 𝑛 are parameters based on the specific scenario, 𝑓 is the carrier
frequency (in GHz), 𝑑 is the distance between the transmitter and the receiver (in
meters), and b ∈ N(0, 𝜎2) is a log normal term accounting for shadowing effect.
The detailed parameters in different scenarios are listed in Table 2.1.
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Table 2.2: Summary of path loss model parameters for outdoor scenarios at different
frequency bands.

Parameter 28 GHz 73 GHz
𝐴 72 86.6
𝑛 2.92 2.45
b 8.7 8.0

• Path loss model in outdoor scenarios: In outdoor scenarios, a comprehensive
investigation is conducted at the 28 GHz and 73 GHz bands. These two frequency
bands are potentially allocated for the fifth generation 5G cellular networks. Based
on experimental measurements in New York City, an empirical path loss model
via a linear fitting method is given by

𝑃𝐿 (𝑑𝐵) = 𝐴 + 10𝑛 log10 (𝑑) + b, (2.3)

where 𝐴 and 𝑛 are parameters based on the specific scenario, and b is a log normal
term accounting for shadowing effect. Parameters in the above path loss model at
different frequency bands are listed in Table 2.2.

2.1.3 Sparse Channel

The third characteristic of mmWave communication is channel sparsity. The diffrac-
tion is very rich in microwave communication at lower frequency bands which
possess dozens of paths in the channel. The channel in mmWave communication is
relatively sparse, and there are only a few clustered paths in the channel. In the fol-
lowing, we show the number of paths and the performance of these paths in practical
scenarios.

• Number of paths: Commonly, the clustered paths are made up of one dominant
LOS path and a few NLOS paths. These NLOS paths are usually generated by
some strong reflectors, such as human bodies and building materials. Recent ex-
periments and measurements show that the mmWave channel is very sparse [12].
For example, in office, corridor and conference room scenarios, there are less
than 5 paths on average at the unlicensed 60 GHz band. At the 28 GHz band,
similar results have been obtained. In addition, another study in [13] shows that
only averagely 2.4 clustered paths exist in mmWave channel. As a typical exam-
ple shown in Fig. 2.3, only two clustered paths exist between the transmitter and
receiver. One is a LOS path, and the other is a NLOS path which is caused by the
strong metallic reflector.

• Performance of paths: Extensive experiments are conducted to study the perfor-
mance of the paths, especially NLOS paths. It is expected that the NLOS path
suffers extra path loss than the LOS path due to the reflection and a longer trans-
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Fig. 2.3: The LOS and NLOS paths in mmWave communication. The NLOS path is
caused by reflection.

mission distance. Measurement results based on a ray-tracing method in an office
environment show that the first-order reflection NLOS path suffers about 5-10 dB
SNR loss compared with the LOS path. The SNR of the second-order reflection
NLOS path is approximately 10-20 dB lower than that of the LOS path [14].

Although channel sparsity can reduce network coverage, it also brings some ben-
efits. For example, channel sparsity feature can be utilized to address the channel
estimation problem in mmWave communications. A large antenna array is exploited
to form narrow beams with high antenna gains to counteract the path loss at mmWave
frequency bands. The adoption of the large antenna array incurs a formidable task
for channel estimation since the dimension of channel matrix is large, which results
in a significant channel estimation overhead. As such, channel estimation becomes
a bottleneck for mmWave communication to achieve high throughput. To solve the
issue, the channel sparsity in mmWave communication can be harnessed. Some com-
pressive sensing based algorithms are designed to alleviate the cost and complexity
of channel estimation via [15]. The authors in [16] proposed a fast beam tracking
algorithm via exploiting channel sparsity feature at mmWave frequency bands.

2.1.4 Directional Antennas

Another characteristic in mmWave communications is the directional antennas. Un-
like the traditional microwave communication systems that adopt omni-directional
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antennas, mmWave communications need to adopt directional antennas to compen-
sate huge path loss. To achieve sufficient antenna gain, the beamwidth is usually very
narrow. For example, a 50 × 50 phased antenna array can generate a narrow beam
with a beamwidth of 3𝑜, which can provide a directional antenna gain up to 36 dB.
The high directionality characteristic is one of the key distinctions between mmWave
communication and traditional microwave communication. The high directionality
results in many challenges in mmWave communications, such as beam alignment
and medium access control performance, which are detailed in Chapters 3 and 4.

2.1.5 Blockage Effect

The last characteristic is the blockage. Unlike microwave signals, mmWave signals
suffer from high penetration loss. This is because the mmWave signal wavelength
is usually much smaller than the sizes of objects in the environment. For example, a
brick can attenuate mmWave signals as much as 40-80 dB [17] [18]. Human body
may result in an attenuation of 20-35 dB. Foliage also causes a significant penetration
loss, which poses significant challenges for outdoor mmWave communications. The
experience high penetration loss in mmWave communication is in stark contrast with
microwave communication [19].

The high penetration loss makes blockage as a thorny issue in mmWave communi-
cations. There are several forms of common blockage in mmWave communications,
some are listed as follows: (1) Hand blockage, i.e., mmWave signals are blocked
by human hands, which may occur with a high probability. This is because mobile
phones or other portable digital devices are usually held in human hands; and (2)
Self-body blockage, which is caused by the human gesture and body rotation. This
blockage form is common in indoor scenarios. These blockage forms do not occur
in traditional microwave communications. In practical scenarios, various kinds of
blockage forms need to be considered and addressed. We can claim that blockage
can be considered as one of the main differences between the traditional microwave
communication and mmWave communication [20].

The blockage effect varies in different scenarios. Some studies investigate the
blockage effect in different scenarios. For the indoor scenarios, blockage is mainly
caused by human movements. Experiment results in [21] show that link outage
caused by blockage increases to 22% when there are 11-15 persons in the room, and
the link outage decreases to only 1%-2% when there are 1-5 persons in the room.
In addition, the duration of blockage effect may last several hundred milliseconds.
The latency incurs significant data transmission delay. For the outdoor scenarios, the
LOS link can be easily blocked by buildings and other static objects especially in
a dense environment. This blockage shows that the coverage of mmWave network
can be severely affected by nearby environments. Besides, if blockage occurs, the
received SNR would drop significantly, rendering link outage and great degradation
of network throughput.



22 2 Literature Review of mmWave Networks

In the literature, some anti-blockage schemes are proposed to alleviate the block-
age effect. First, to understand blockage effect better, random shape theory and
geographic information are applied to derive some models to analyze blockage ef-
fect [22]. Then, to solve the blockage issue of the dominant LOS link, strong NLOS
paths are exploited to provide a reliable connection when blockage occurs [14]. For
example, measurement results in New York City show that NLOS paths can be used
to expand the network coverage even in a dense urban scenario [23]. By predicting
the performance of multiple beams, “BeamSpy” is designed to immediately choose
the best alternative beam to re-establish the communication link once blockage
occurs [12].

2.2 Beamforming Technology

Beamforming is the key enabling technology in mmWave communication to over-
come huge path loss. There are several state-of-the-art beamforming technologies
proposed in the literature. We first introduce digital beamforming and analog beam-
forming technologies in Section 2.2.1 and Section 2.2.2, respectively. Then, we
introduce a hybrid version, i.e., hybrid beamforming, for supporting multiuser trans-
mission in Section 2.2.3.

2.2.1 Digital Beamforming

Digital beamforming is usually adopted in traditional microwave communication at
the below 6 GHz frequency band, which is performed by digital baseband process-
ing components, such as digital signal processing (DSP) units. However, applying
existing digital beamforming in mmWave communication systems faces multiple
challenges: (1) Excessive energy consumption - In the existing digital beamform-
ing architecture, each antenna element needs to connect with a radio frequency
(RF) chain and an analog-to-digital conversion (ADC)/digital-to-analog conversion
(DAC). Both RF chain and ADC/DAC consume a large amount of energy. Moreover,
mmWave communication systems usually adopt a large number of antenna elements
(e.g., 1024), and thus a large number of RF chains and ADCs/DACs should be
installed for digital beamforming, resulting in excessive energy consumption; and
(2) Prohibitive hardware complexity - It is difficult to place so many RF chains
and ADCs/DACs into a small chip fabrication. Therefore, taking both energy con-
sumption and hardware constraints into consideration, digital beamforming may be
unsuitable in mmWave systems.
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Fig. 2.4: The analog beamforming architecture in mmWave communication. Analog
circuit adjusts the beam direction via shifting phases of each antenna element.

2.2.2 Analog Beamforming

Another beamforming technology is digital beamforming, which is a de-facto ap-
proach in mmWave systems to reduce complexity. Analog beamforming has been
adopted in many ratified mmWave communication standards, such as 802.11ad and
WirelessHD. As shown in Fig. 2.4, analog beamforming only employs one RF chain
and one DAC/ADC at the transmitter or the receiver. Specifically, analog phase
shifters are utilized to implement analog beamforming. Giving each antenna a phase
shift, i.e., a phase weight vector at the antennas, analog beamforming can be gen-
erated. For low implementation complexity consideration, the phase weight vectors
can be designed offline and stored in a codebook. A codebook is a matrix, in which
each column vector indicates a phase weight vector for the antenna array and can be
used to form a specific beam pattern. Multiple codebook-based analog beamforming
schemes are proposed to form various beam patterns in the literature. For example,
a codebook based on discrete Fourier transform (DFT) is proposed [24]. This code-
book has been widely adopted to generate uniform antenna gain for different beam
directions in recent studies in mmWave networks.

2.2.3 Hybrid Beamforming

The motivation of hybrid beamforming is due to the following factors. Although ana-
log beamforming can offer high-speed data transmission, it can only support one data
stream at a time. To enable multiuser transmission in mmWave networks, extensive
efforts are devoted recently. Multiuser transmission can significantly enhance spa-
tial reuse and increase data rate in mmWave networks. Taking the current 802.11ac
standard at lower frequency bands as an example, 802.11ac can support up to four
users in the multiuser transmission mode. The multiuser transmission schemes in
lower frequency bands are implemented by digital beamforming which can effec-
tively mitigate the interference among users to enhance data rate. As we mentioned in
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Fig. 2.5: An illustrative example of hybrid beamforming in mmWave communication.

Section 2.2.1, the design of digital beamforming faces many challenges in mmWave
systems, such as high hardware complexity, huge channel estimation overhead, and
excessive energy consumption. These challenges make digital beamforming unsuit-
able for mmWave systems. It is desired to develop a tailored energy-efficient yet
low-complexity solution for mmWave communication.

A novel solution, namely hybrid beamforming that integrates analog beam-
forming and digital beamforming, is proposed to enable multiuser transmission
in mmWave systems [25]. In specific, the analog beamforming part controls the
signal phase at each antenna element to provide sufficient directional antenna gain,
and the digital beamforming part focuses on mitigating interference among users.
A typical example is shown in Fig. 2.5. The hybrid beamforming scheme requires
multiple RF chains to support multiple data streams. Existing works show that hybrid
beamforming can achieve close-to-optimal performance as compared to fully digital
beamforming while significantly reducing complexity [26]. As such, if hybrid beam-
forming could be successfully applied for multiuser downlink transmission, data rate
in mmWave networks can be significantly improved.

A collection of works investigate hybrid beamforming performance in different
mmWave networks. The first hybrid beamforming algorithm for mmWave networks
is proposed by Alkhateeb et al. in [27], which leverages the channel state information
feedback from users to design the baseband digital beamforming at the AP. Another
important work utilized the channel sparsity to design a low-complexity hybrid
beamforming algorithm in [28]. An extended work investigated efficient hybrid
beamforming design in mmWave cellular networks [29]. Aldubaikhy et al. studied the
user selection issue in the hybrid beamforming algorithm, and then they proposed a
novel low-complexity hybrid beamforming scheme which incorporates user selection
to enhance the uplink performance in mmWave systems [30]. Hybrid beamforming
based mmWave communication can also be applied for supporting data transmission
services for high-mobility trains [31].
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Figure 9-43 illustrates an example of access periods within a beacon interval comprising a BTI, an A-BFT,
an ATI, and two CBAPs and SPs within the DTI. Any combination in the number and order of SPs and
CBAPs can be present in the DTI. 

The details of the access protocol within each of the access periods are described in the remaining
subclauses of 9.33 and within 9.35.

9.33.3 ATI transmission rules

The presence of an ATI in the current beacon interval is signaled by the ATI Present field set to 1 in the
current DMG Beacon (8.3.4.1). The Next DMG ATI element (8.4.2.137) transmitted in the Announce frame
or in the DMG Beacon frame indicates the earliest start time for the next ATI in a subsequent beacon
interval and ATI duration. 

An example of an ATI is shown in Figure 9-44. 

During an ATI, request and response frames are exchanged between the PCP/AP and any subset of STAs.
The PCP/AP initiates all frame exchanges that occur during the ATI. The ATI shall not start sooner than
Max(guard time, MBIFS) following the end of the previous A-BFT when an A-BFT is present in the beacon
interval or following the end of the previous BTI when an A-BFT is not present but a BTI is present in the
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Figure 9-43—Example of access periods within a beacon interval
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Figure 9-44—Example of frame exchanges during the ATI

Fig. 2.6: Beacon interval structure in 802.11ad.

2.3 Beamforming Training Protocol in IEEE 802.11ad

As mentioned before, 802.11ad is the first ratified WLAN standard that operates in
the unlicensed 60 GHz band. The 802.11ad has achieved great success in mmWave
WLANs and is going to witness an emerging great market of mmWave WLAN
devices in the future. In 802.11ad, beamforming plays a pivotal role to establish
reliable mmWave connection between the transmitter and receiver. The transmitter
and receiver must scan their entire beam space to find the best transmit and receive
beams. Beamforming training is such a procedure to find the best transmit and receive
beams.

In this section, we give a detailed introduction for the beamforming training
protocol in the celebrated 802.11ad standard. Specifically, we first give an overview
of the protocol in Section 2.3.1. For two essential phases in the protocol, i.e., sector
level sweep (SLS) and beam refinement protocol (BRP), we present not only their
basic ideas but also corresponding detailed operations in the standard in Section 2.3.2
and Section 2.3.3, respectively. Finally, beam searching complexity analysis of the
protocol is presented in Section 2.3.4.

2.3.1 Overview of 802.11ad Beamforming Training Protocol

There are two operation modes in 802.11ad. One is the directional multi-gigabit
(DMG) mode and the other is the non-DMG mode. The DMG mode in 802.11ad
is to adopt beamforming technology in mmWave communication to provide high-
speed data transmission. In the following, we focus on the protocol behaviour in the
DMG mode.

We first introduce the frame structure in 802.11ad. In 802.11ad, beacon interval
(BI) is the basic time frame [32, 33]. As shown in Fig. 2.6, a BI is made up of two
stages: (1) beacon header interval (BHI) stage and (2) data transmission interval
(DTI) stage. The BHI stage consists of beacon transmission interval (BTI), associa-
tion beamforming training (A-BFT), and announcement transmission intervals (ATI)
stages. The DTI stage includes multiple service periods (SPs) and contention-based
access periods (CBAPs), which are allocated for data transmission with different
purposes. Specifically, SPs are for scheduled access periods, and CBAPs are for
distributed channel access periods.
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Fig. 2.7: Coarse-grained beams (i.e., sectors) in the SLS phase and fine-grained
beams in the BRP phase.

Based on the BI structure, the working flow of the beamforming training protocol
is presented. Specifically, the protocol is made up of three phases: sector level sweep
(SLS), beam refinement protocol (BRP), and beam tracking (BT). The functionalities
of these phases are detailed as follows:

• SLS phase: This phase is performed in the BTI and A-BFT stages. Both the
transmitter and receiver sweep all the sectors to obtain the optimal transmit and
receive sectors (i.e., coarse-grained or wide beams). A sector includes several
fine-grained beams. As the example shown in Fig. 2.7, there are eight sectors in
the entire beam space, and each sector contains six fine-grained beams;

• BRP phase: This phase is performed in the DTI stage. Once the optimal transmit
and receive sectors are identified, both the transmitter and receiver search all the
fine-grained beams contained in the identified sectors to find the fine-grained
transmit-receive beams (i.e., narrow beams);

• BT phase: BT is an optional phase which is employed during the DTI stage
to adapt to channel change. For example, in high-mobility scenarios, such as
vehicular networks, the beamforming training should be invoked continuously,
which is to track beams between the transmitter and receiver.

This chapter focuses on the two compulsory phases, i.e., SLS and BRP. Their
detailed descriptions and operations are given in the following.

2.3.2 Sector Level Sweep

The goal of the SLS phase is to obtain the optimal transmit-receive sector pair, i.e.,
coarse-grained beam pair. Specifically, the SLS phase consists of the following two
steps:
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Step 1 Step 2

Fig. 2.8: The SLS phase in 802.11ad includes two steps. In step 1, the transmit-
ter adopts the directional transmission mode while keeping the receiver the omni-
directional. In step 2, the transmitter keeps the omni-directional mode, while the
receiver adopts the directional mode to scan the beam space.

1. The transmitter adopts the directional transmission mode, i.e., all the sectors in
the sector space are selected in a sequential manner, and the receiver keeps the
omni-directional mode. As such, the receiver can obtain the optimal transmit
sector identification (ID) via comparing the received signal strength of all the
sectors;

2. The second step is to perform the first step in an opposite way. The transmitter
keeps the omni-directional mode, while the receiver adopts the directional mode.
Similarly, the optimal receiver sector ID can be obtained.

As such, the optimal sector pair between the transmitter and receiver can be obtained.
The basic idea of the SLS phase is given in Fig. 2.8. This process is compulsory
which must be performed in the BTI and A-BFT phases. The BTI phase is for the
first step and the A-BFT phase is for the second step. Note that beamforming training
in the SLS phase should be judiciously designed since the length of A-BFT phase is
limited.

Next, we show the detailed operations in the 802.11ad standard to implement
the SLS phase. We consider an SLS example between an access point (AP) and one
station (STA), i.e., user, as shown in Fig. 2.9. Here, the AP is the transmitter and the
STA is the receiver. The detailed procedure consists of four subphases, i.e., initial
sector sweep (ISS), responder sector sweep (RSS), sector sweep feedback, and sector
sweep acknowledgment (ACK) subphases. These subphases operate as follows:
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SBIFS

MBIFS MBIFS MBIFS

Fig. 2.9: Operations between an AP and an STA in the SLS phase.

• In the ISS subphase, multiple sector sweep (SSW) frames are transmitted by the
AP using different sectors. During the transmission, the STA keeps the omni-
directional mode to receive the SSW frames. The optimal transmit sector ID at
the AP is identified by comparing received signal strength at the STA;

• In the RSS subphase, the process is reversed. The STA scans its sector space
via transmitting SSW frames to the AP. While the AP adopts the quasi-omni
directional mode. Similar to that in the ISS subphase, the AP can identify the
optimal receive sector ID at the STA according to the received signal strength;

• The best receive and transmit quasi-omni sector IDs are exchanged between the
AP and the STA via sending a sector sweep feedback frame and a sector sweep
acknowledgment frame in the last two subphases.

In this way, the SLS phase is completed, and the optimal transmit-receive sector pair
are identified.

2.3.3 Beam Refinement Protocol

The SLS phase is followed by the BRP phase which is to refine the beams. The
goal of the BRP phase is that both the transmitter and receiver search all the fine-
grained beams within the identified transmit-receive sector pair to find the best
transmit-receive fine-grained beam. The BRP phase consists of four subphases, i.e.,
BRP setup, multiple sector ID (MID), beam combining (BC), and BRP transaction
subphases. Due to imperfect quasi-omni directional antennas in practical mmWave
systems, the MID and BC subphases are used to identify better initial antenna weight
vectors via iterative beam refinement. The number of iterations to finish MID and
BC subphases is denoted by 𝑁𝐵𝑅𝑃 .
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Fig. 2.10: Operations in the BRP phase between an AP and an STA, including BRP
setup, MID, BC, and BRP transaction subphases.
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Next, we present the operations in the BRP phase via the following simple
example. The BRP phase is performed between an AP and an STA, as shown in
Fig. 2.10. The procedure is detailed as follows:

1. BRP setup subphase: The STA and the AP first exchange beam refinement capa-
bility information and request the execution of the other BRP subphases via some
BRP frames;

2. MID subphase: In this subphase, the transmitter first scans all the fine-grained
beams in the identified optimal transmit sector to obtain several candidate fine-
grained transmit beams. Secondly, in a similar manner, the receiver scans all
the fine-grained beams in the identified optimal receive sector to obtain several
candidate fine-grained receive beams;

3. BC subphase: Both the transmitter and receiver scan candidate fine-grained trans-
mit and receive beams to identify the optimal transmit-receive fine-grained beam
pair;

4. BRP transaction subphase: The information between the AP and the STA is
exchanged to report the optimal transmit-receive beam pair.

Note that BRP is performed in the DTI stage which is different from the SLS phase
in the BTI and A-BFT stages. One can refer to the 802.11ad standard for the detailed
operations.

2.3.4 Beam Searching Complexity

For the beamforming training protocol in 802.11ad, the beam searching complexity
analysis of the protocol is given as follows. To analyze the complexity, the illustration
of the beamforming training protocol with the SLS and two BRP subphases is given
in Fig. 2.11. We assume that both the transmitter and receiver adopt the same beam
patterns. The transmitter is equipped with𝑄 sectors. There are 𝐵 > 𝑄 narrow beams
in the entire beam space [19,34]. In the protocol, the SLS phase, the MID subphase,
and the BC subphase conduct the beam searching operations. The reason that the
BRP setup and BRP transaction subphases are not considered is because there is no
beam searching operation in these phases.

The beam searching complexity analysis in each phases is given as follows:

• Beam searching complexity in the SLS phase: To find the optimal transmit and
receive sectors, the transmitter and receiver search all the 𝑄 sectors in their
sector space via an exhaustive searching algorithm. The corresponding searching
complexity is 𝑄2;

• Beam searching complexity in the MID subphase: Let 𝛿 ≥ 2 denote the number of
candidate transmit quasi-omni sectors. All the fine-grained beams in the optimal
receive quasi-omni sector are scanned to obtain optional candidate transmit and
receive fine-grained beams. The corresponding searching complexity is 𝛿𝐵/𝑄;

• Beam searching complexity in the BC subphase: Let 𝛾 ≤ 7 denote the number of
candidate fine-grained beams. All 𝛾 beams are scanned at both transmitter and
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Fig. 2.11: Beam searching in 802.11ad beamforming training protocol, including
SLS, MID, and BC phases.

receiver to find the best transmit and receive fine-grained beams via an exhaustive
method. The corresponding searching complexity is 𝛾2.

Overall, taking the above three phases into consideration, the searching complex-
ity of the beamforming training protocol in 802.11ad is given by

𝐵𝐹𝜏 = 𝑄
2 + 𝛿𝐵

𝑄
+ 𝛾2. (2.4)

The above equation indicates that the beam searching complexity of the protocol is
O(𝑄2) . Compared with the beam searching complexity via an exhaustive searching
method whose complexity is O(𝐵2), the beam searching complexity of the beam-
forming training protocol in 802.11ad is greatly reduced.

From the results, we show that beam searching complexity increases quadrati-
cally with the number of beams. We know that narrow beams would be adopted
in mmWave communication to provide sufficient directional antenna gain for high-
speed data transmission. The adoption of narrow beams would incur a significant high
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beam searching complexity. Such high beam searching complexity renders a long
access delay. For a narrow beam with a beamwidth of 2.8𝑜, it takes approximately
4 seconds for finishing the beamforming training procedure [35]. In high-mobility
scenarios, such as vehicular networks, frequent beamforming training is required due
to beam misalignment caused by user mobility, which degrades mmWave network
performance. This motivates our work on designing low-latency beam alignment
schemes in Chapter 3.

2.4 Multi-Armed Bandit Theory

In this section, we introduce some basic knowledge on multi-armed bandit (MAB)
theory. It is worth noting that the MAB method is one of reinforcement learn-
ing methods. Recently, traditional reinforcement learning methods, such as deep Q
networks, have been widely applied to solve networking problems in the wireless
domain, including mobile crowdsourcing [36], service migration in vehicular net-
works [37], network slicing in cellular networks [38], task offloading in industrial
IoT networks [39], resource scaling in virtual networks [40], and content caching in
edge networks [41]. Compared with the traditional reinforcement learning methods
with a tuple of three elements, i.e., state, action, and reward, the MAB method only
has two elements, i.e., action and reward, which lacks the state. Such difference
results in different applications of traditional reinforcement learning methods and
the MAB method.

The MAB theory originates from an exploration and exploitation dilemma. The
exploration is to make the best decision given current information. The exploitation
is to gather more information in order to make better decisions. We often face this
dilemma in our daily life. Taking video games as an example, we often have two
choices. One option is to play the move that you believe is the best. This option is
exploitation. Another option is to play an experimental move. This option is explo-
ration. Another example is the online banner adverts placement for business groups.
Showing the most successful advert to users based on their historical records is
exploitation. Showing a different advert for users is exploration. With such explo-
ration and exploitation dilemma, the optimal long-term strategy involves short-term
sacrifices. On the one hand, gathering enough information via exploration to make
the best overall decisions is required. On the other hand, frequently exploration
may waste the constrained resources. Hence, it is a challenging issue to balance the
exploration and exploitation.

The MAB theory is used to address such exploration and exploitation dilemma.
Its name originates from the old-fashioned one-armed bandit machine game in the
casino. In this game, in front of a gambler, there are multiple one-armed bandit
machines. The gambler pulls an arm of a bandit machine at each time, and then he
gets a reward from the bandit machine. The goal of the gambler is to maximize his
long-term benefit by selecting the arm of bandit machines in a sequential manner.
This problem is referred to as the stochastic MAB problem. Assume that there are
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Fig. 2.12: Reward distributions for ten different actions in an MAB problem.

𝑁 bandit machines. Each bandit machine has an independent reward distribution,
and the reward distribution is unknown to the gambler. As the example as shown
in Fig. 2.12, there are ten candidate actions, and the reward distribution of each
action is independent. As such, the obtained reward at each time is a sample from the
reward distribution. Mathematically, stochastic MAB problem can be modeled by a
tuple with two elements, i.e., (A,R). Here, A represents the set of actions, which
are referred to as arms, and R represents the set of unknown reward distributions.
Let 𝑡 denote the index of time slots, i.e., we have 𝑡 = 1, 2, ..., 𝑇 . At each time slot,
action 𝑎𝑡 is selected by an MAB algorithm, and then a reward 𝑟𝑡 is obtained from the
environment. The objective of the MAB algorithm is to find a policy to maximize
the cumulative reward. In the bandit theory, people usually adopt cumulative regret
to evaluate the performance of a bandit learning algorithm. Assume that there exists
the optimal algorithm which knows the optimal action a priori and always selects
the optimal action. The cumulative regret is defined as the gap between the optimal
algorithm and the adopted bandit learning algorithm. Based on above definition,
maximizing the cumulative reward is equivalent to minimizing the cumulative regret.

In the literature, a number of solutions for MAB problems have been proposed
in different settings. For a standard stochastic MAB problem, Lai and Robbins first
studied the fundamental regret lower bound in [42]. In the following, Auer et. al
proposed the celebrated upper confidence bound (UCB) algorithm to achieve the
lower bound [43]. Based on the core idea of UCB, many variants of UCB algorithms
have been developed for different problems, including: (1) Bayesian bandit prob-
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lem [44, 45], in which some prior knowledge is leveraged to speed up the learning
process; (2) Combinatorial bandit problem [46], whose objective is to select the
optimal subset of actions instead of selecting a single action; (3) Volatile bandit
algorithm [47], in which the set of action varies; (4) Correlated bandit problem [48],
in which actions are correlated with each other; and (5) Multi-agent bandit prob-
lem [49], in which multiple agents independently learn a joint action set. Interested
readers are referred to a tutorial survey in [50] and the references therein. In Chap-
ter 3, a correlated MAB problem is investigated in the context of beam alignment in
mmWave networks [51].

2.5 Summary

In this chapter, we have surveyed the main characteristics of mmWave communication
and the state-of-the-art beamforming training techniques for establishing mmWave
connections. In addition, we have presented the beamforming training protocol in
the celebrated 802.11ad standard in detail. Also, we have introduced some basic
knowledge on the MAB theory for its potential application in the next chapter.
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Chapter 3
Machine Learning Based Beam Alignment in
mmWave Networks

Abstract In this chapter, we discuss the beam alignment (BA) problem in mmWave
networks. We first formulate the BA problem as a stochastic multi-armed bandit
problem, with the aim of maximizing the cumulative received signal strength in a
certain period. In order to accelerate the BA process, we develop a learning algorithm
named hierarchical beam alignment (HBA) algorithm. This algorithm exploits the
correlation structure among beams such that the information from neighbouring
beams can be harnessed to find the optimal beam, instead of exhaustively searching
the entire beam space. In addition, the prior knowledge on channel dynamics is
incorporated in the HBA algorithm to reduce the BA latency. Theoretical analysis
proves that the proposed algorithm asymptotically approaches the optimal solution.
Extensive simulation results show that the proposed HBA algorithm can successfully
find the optimal beam with a high probability. Meanwhile, compared to the existing
BA method in IEEE 802.11ad, the proposed HBA algorithm reduces the BA latency
from hundreds of milliseconds to a few milliseconds in the case of multipath channel.

3.1 Introduction

In mmWave communication systems, both the transmitter and receiver use narrow
directional beams to make up for the huge attenuation loss [1]. The communica-
tion can take place only if the beams of the transmitter and receiver are correctly
aligned [2], as shown in Fig. 3.1. Beam alignment (BA) is such a process that iden-
tifies the optimal transmit-receive beam pair for maximizing the received signal
strength (RSS). Beam misalignment can reduce the link budget remarkably and cut
down the throughput from several Gbps to a few hundred Mbps [3]. As a pivotal
process in mmWave communications, BA is of great significance to the realization
of multi-gigabit wireless transmission. A naive exhaustive search method scans all
the combinations of the transmitter and receiver beams to obtain the best beam pair,
but this causes a large BA delay. However, a low-latency BA process is essential for
practical mmWave systems to adopt real-time applications. Furthermore, in mobile
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Fig. 3.1: A beam alignment example with 16 beams. The well-aligned transmitter
and receiver beams are represented by solid green beams.

scenarios, user mobility changes the beam direction and thus frequently calls BA,
which further aggravates the delay. To accelerate the beam search, 802.11ad proto-
col decouples the BA process into two steps. Firstly, the transmitter begins with a
quasi-omnidirectional beam and the receiver scans the beam space to obtain the best
receiver beam. Secondly, the transmitter scans the beam space for the best transmitter
beam and keeps the receiver quasi-omnidirectional in the meantime. Nevertheless,
the existing BA method in IEEE 802.11ad may take as long as several seconds to
process a large number of candidate beams [4]. In order to shorten the BA latency,
we begin to explore whether there are other methods that can determine the optimal
beam without searching the entire beam space.

There are some early efforts on addressing this challenge in the existing literature.
Based on the sparse characteristic of the mmWave channel, Marzi et al. developed a
compressed sensing BA method [5]. Certain out-of-band information, e.g., the WiFi
signal, is exploited to identify the optimal beam in [6]. These works perform BA
with the assistance of excessive additional information besides RSS. Surprisingly, a
crucial feature, the correlation structure between beams, is overlooked in previous
works. In fact, the RSS of adjacent beams is similar which means adjacent beams
are highly correlated. In this way, if a beam performs poorly, its nearby beams are
very likely to perform worse. The measurement of one beam reveals not only its
own information, but also its nearby beams. Therefore, it is possible to identify
the optimal beam using the information learned from nearby beams, which avoids
searching the entire beam space.

In this chapter, we propose a fast BA algorithm, named hierarchical beam align-
ment (HBA), by utilizing the correlation structure among beams and the prior
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knowledge on the channel fluctuation. In the BA problem, fast BA means identifying
the optimal beam with the minimum latency. This problem boils down to select-
ing beams sequentially within a certain period to maximize the cumulative RSS,
which can be formulated as a stochastic multi-armed bandit (MAB) problem. Our
proposed algorithm contains two characteristics that can effectively solve this prob-
lem. Firstly, theoretical analysis indicates that the correlation structure among beams
in the multipath channel can be characterized by a multimodal function. Utilizing
this correlation structure, the proposed algorithm intelligently narrows the searching
space to identify the optimal beam. Secondly, combining the prior knowledge on the
channel fluctuation to appropriately accommodate reward uncertainty, the proposed
algorithm avoids excessive exploration which further accelerates the BA process.
According to the theoretical analysis, the regret of HBA is bounded, so the proposed
algorithm is asymptotically optimal. Extensive simulation results prove that even if
the prior knowledge is coarse, HBA can identify the optimal beam with a high prob-
ability and reduce the number of beam measurements in the multipath channel. In
particular, compared with the BA method in IEEE 802.11ad, the proposed algorithm
reduces the BA latency by several orders of magnitude.

The remainder of this chapter is organized as follows. Section 3.2 reviews the
related works. In Section 3.3, system model and problem formulation are presented.
Section 3.4 proposes a fast BA algorithm. Section 3.5 analyzes the regret performance
of the proposed algorithm. Simulation results are given in Section 3.6. Finally,
Section 3.7 summarizes this chapter.

3.2 Related Works on Beam Alignment

The BA problem in mmWave systems has attracted much attention recently. Zhou et
al. elaborated on the challenges of the random access protocol in the BA process
in dense networks [7]. Besides, the authors developed a solution from the MAC
perspective. By taking advantage of the sparse property that only a few paths exist
in the mmWave channel, the compressed sensing solution can align beams with low
beam measurement complexity of 𝑂 (𝐿 log 𝑁), where 𝐿 is the number of channel
paths and 𝑁 is the number of beams [5]. The method is suitable for mmWave systems
which can obtain the accurate phase information. In another research direction,
Wang et al. exploited a fast-discovery multi-resolution beam search in [8], which
first detects a wide beam and continues to narrow beams until the best beam is
determined. Although feasible, the approach requires adjusting the beam resolution
at each step. On the other hand, Xiao et al. proposed a hierarchical codebook search
method to efficiently identify the optimal beam through the joint use of sub-array and
deactivation technology [9]. In addition, they provide the closed-form representation
of the hierarchical codebook. Sun et al. further proposed a low-overhead beam
alignment method based on orthogonal pilots for the multiuser mmWave systems
[10]. Another solution exploits certain out-of-band information, i.e., the WiFi signal,
to identify the optimal beam [6]. Similar works extract spatial information from sub-
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Table 3.1: A comparison between the proposed BA solution with the existing solu-
tions. “NA" means not available.

Work Complexity Only RSS Multipath Channel Single-Beam
Exhaustive search 𝑂 (𝑁 2) Yes Yes Yes

802.11ad 𝑂 (𝑁 ) Yes Yes Yes
Compressed sensing [5] 𝑂 (𝐿 log 𝑁 ) No Yes Yes

UBA [3] 𝑂 (𝑁 ) Yes No Yes
Out-of-band solutions [12] NA No Yes NA

Rapid-Link [4] 𝑂 (𝐿 log 𝑁 ) Yes Yes No
Proposed 𝑂 (log 𝑁 ) Yes Yes Yes

6 GHz signals to assist BA as well as improve throughput [11, 12]. Recent efforts
leverage the multi-armed beams capability to improve BA performance. Hassanieh
et al. proposed a fast BA protocol that scans multiple directions simultaneously [4].
A similar method was developed to transform the problem of identifying the optimal
beam to locating the error in linear block codes to reduce BA complexity [13]. The
works in [4–13] provide possible solutions for the BA problem in various scenarios.
Different from prior works, our work considers the relevant structure among adjacent
beams to assist BA process.

Machine learning techniques, especially reinforcement learning and deep learn-
ing, have been widely applied in the current advanced wireless networks to address
different problems in very recent years [14–16], including network slicing [17] and
resource allocation [18, 19]. Among machine learning algorithms, MAB is a low-
complexity learning solution. For basic knowledge on MAB theory, the readers are
referred to our detailed introduction in Section 2.4 in Chapter 2 in this monograph.
The MAB theory has been widely applied in wireless networks, such as power allo-
cation in small base stations [20] [21], content placement in edge caching [22, 23],
task assignment in mobile crowdsourcing [24] and mobility management in mobile
edge computing [25]. Very recently, based on the MAB theory, the BA problem is
studied, online decision-making to strike a balance between exploitation and explo-
ration. Gulati et al. applied the celebrated upper confidence bound (UCB) algorithm
in beam selection in traditional MIMO systems [26]. Sim et al. developed an online
beam selection algorithm in mmWave vehicular networks based on contextual bandit
theory [27]. By learning information from real-time environment, this work improve
the throughput of mmWave networks. A pioneering work in [3] exploits a unimodal
structure among beams to accelerate the BA process in static environments. This
solution focuses on aligning beams in the single-path channel. Another work devel-
oped a distributed BA search method based on adversarial bandit theory [28]. These
works provide highly relevant insights into the BA problem in mmWave networks via
bandit learning theory. Nevertheless, they do not provide a method to align beams
quickly and accurately, especially in complex multipath channels. Different from ex-
isting works, we focus on the usage of the correlation structure and prior knowledge
to accelerate the RSS-only BA process in the multipath channel.
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Fig. 3.2: The point-to-point mmWave system.

Moreover, to highlight the difference, we compare the proposed BA solution with
multiple celebrated existing BA solutions in terms of algorithm complexity, whether
only RSS information is required, whether multipath channel is supported, and
whether adopting single-beam pattern, as summarized in Table 3.1. The proposed
solution has a low complexity while only requiring RSS information and single-beam
pattern. In addition, the proposed solution can work in multipath channels.

3.3 System Model and Problem Formulation

3.3.1 Beam Alignment Model

As shown in Fig. 3.2, we consider a static point-to-point mmWave system in which
the transmitter is equipped with 𝑁 antennas. Uniform linear arrays are assumed
to be equipped on both the transmitter and receiver, and each antenna element is
connected to a phase shifter to form narrow directional beams [29]. In the BA
process, the receiver remains quasi-omnidirectional, while the transmitter scans the
beam space to identify the best one.

We consider the sparse clustered channel model, i.e., Saleh-Valenzuela model
[30]. Suppose that the channel consists of 𝐿 paths: one dominant LOS path and 𝐿−1
NLOS paths, due to strong reflections from the ground or side walls. The channel
array response between the transmitter and receiver can be formulated as a mixture
of sinusoids,

ℎ𝑛 = 𝑔0𝑒
𝑗 2𝜋𝑑

_
𝑛𝜗0 +

𝐿−1∑︁
𝑙=1

𝑔𝑙𝑒
𝑗 2𝜋𝑑

_
𝑛𝜗𝑙 (3.1)
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where 0 ≤ 𝑛 ≤ 𝑁 − 1. Let 𝑑 and _ denote the array element spacing and carrier
wavelength, respectively. Typically, 𝑑 = _/2. Let 𝑔0 and 𝑔𝑙 represent the channel
gains of the LOS path and the 𝑙-th NLOS path, respectively. Of particular note
is that the channel gain of the LOS path is about 10 dB higher than that of the
NLOS path [31]. Let \ denote the physical angle of the channel. The corresponding
spatial angle of the channel is denoted by 𝜗 = cos \ . We vectorize the sinusoids
𝑒 𝑗2𝜋𝑑𝑛𝜗/_, 0 ≤ 𝑛 ≤ 𝑁 − 1 into a vector x(𝜗) ∈ C𝑁×1. Thus, the channel vector is
given by

h = 𝑔0x(𝜗0) +
𝐿−1∑︁
𝑙=1

𝑔𝑙x(𝜗𝑙) ∈ C𝑁×1. (3.2)

Let
W = [w1,w2, ...,w𝑁 ] ∈ C𝑁×𝑁

denote the unitary discrete Fourier transform (DFT) matrix whose columns constitute
the transmit beam space, given by

W =
1
√
𝑁
[x(𝜔1), x(𝜔2), ..., x(𝜔𝑁 )] . (3.3)

In (3.3), 𝜔𝑖 = 2𝑖−𝑁
𝑁

represents the spatial angle of the 𝑖-th beam [5]. According to
the BA method in IEEE 802.11ad, the transmitter scans all the beams in W, while
the receiver beam keeps omni-directional. The received signal vector is given by

y =
√
𝑃h𝐻W + n (3.4)

where n denotes the additive Gaussian white noise vector. Let 𝑁𝑜𝑊 represent the
mean noise power, where 𝑊 is the channel bandwidth and 𝑁𝑜 is the noise power
density.

The problem of identifying the optimal transmit beam boils down to the problem
of identifying the element with the maximum magnitude within y. Therefore, in
order to identify the optimal beam, the BA method in IEEE 802.11ad protocol needs
to measure the RSS of all the transmit beams, resulting in a high beam measurement
complexity [4]. Searching the entire beam space incurs a remarkable BA delay,
especially when the beam space is large.

3.3.2 Problem Statement

In this subsection, we formulate the BA problem as a stochastic MAB problem in
case of stationary environment. Consider a time slotted system with 𝑇 time slots
of equal duration. In time slot 𝑡 ∈ {1, 2, ..., 𝑇}, the transmitter selects a beam to
transmit data. Let B = {𝑏1, 𝑏2, ..., 𝑏𝑁 } denote the set of candidate beams, which
can be considered as arms in the bandit theory. At the beginning of time slot 𝑡, the
transmitter selects a beam represented by 𝑏𝑡 ∈ B. At the end of time slot 𝑡, the
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transmitter observes noisy RSS from the receiver, i.e., 𝑟 (𝑏𝑡 ), which is considered
as a reward. Rigorously, the reward is a random variable due to uncertain channel
conditions, such as shadow fading and the disturbance effect. For simplicity, we
assume that the reward follows a Gaussian distribution with a variance 𝜎2. In other
words, 𝜎2 also represents the variance of the channel fluctuation, which is utilized as
prior knowledge in the following algorithm design. Note that the proposed algorithm
can also be applied to non-Gaussian distribution settings, as validated in Section 3.6.

Let 𝑏1:𝑡 = {𝑏1, 𝑏2, ..., 𝑏𝑡 } denote the sequentially selected beams up to time
slot 𝑡. The set of corresponding sequential rewards is represented by 𝑟1:𝑡 =

{𝑟 (𝑏1), 𝑟 (𝑏2), ..., 𝑟 (𝑏𝑡 )}. In the MAB setup, the sequential beam selection policy
is how the transmitter selects the next beam based on previously selected beams 𝑏1:𝑡

and observed rewards 𝑟1:𝑡 . Let Π be the set of all possible sequential beam selection
policies. Our goal is to find a policy, 𝜋 ∈ Π, that maximizes the expected cumulative
reward (RSS) within a given time horizon of 𝑇 slots, i.e.,

∑𝑇
𝑡=1 𝑟 (𝑏𝑡 ). This goal is in

line with our target because the fast BA algorithm is to identify the optimal beam
with the least latency.

In the MAB theory, expected cumulative regret is commonly adopted to evaluate
the performance of a given strategy, which represents the expected cumulative dif-
ference between the reward of the selected beam and the maximum reward achieved
by the optimal beam. The expected cumulative regret is defined as

𝑅𝜋 (𝑇) = E
[
𝑇∑︁
𝑡=1

(
𝑟 (𝑏★) − 𝑟 (𝑏𝑡 )

) ]
= 𝑇 · E

[
𝑟
(
𝑏★

) ]
−

∑︁
𝑏𝑖 ∈B

𝑁 𝜋𝑏𝑖 (𝑇)E [𝑟 (𝑏𝑖)]
(3.5)

where 𝑏★ represents the optimal beam and 𝑁 𝜋
𝑏𝑖
(𝑇) denotes the number of times that

𝑏𝑖 has been selected up to time slot 𝑇 . Hence, maximizing the cumulative reward is
equivalent to minimizing the expected cumulative regret within 𝑇 [3], which can be
expressed as

P1 :min
𝜋∈Π

𝑅𝜋 (𝑇)

s.t.
∑︁
𝑏𝑖 ∈B

𝑁 𝜋𝑏𝑖 (𝑇) ≤ 𝑇 (3.6a)

𝑁 𝜋𝑏𝑖 (𝑇) ∈ Z,∀𝑏𝑖 ∈ B. (3.6b)

The problem P1 can be solved by the celebrated UCB algorithm [32]. However,
there are two-fold critical characteristics that the UCB algorithm does not account for.
Firstly, since the RSS of nearby beams are highly correlated, the relevant information
of the nearby beams can be used to select the next beam efficiently. Secondly, the
prior knowledge on the channel fluctuation reflects the environmental information,
which can be used to address the uncertainty of rewards, thereby further accelerating
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the BA process. Next, we use these two features to accelerate the convergence speed,
hence reducing the BA latency.

3.4 Fast Beam Alignment Scheme

In this section, we first analyze and verify that the mean reward (i.e., RSS) over
the beam space follows a multimodality structure, which characterizes the inherent
correlation among beams. Next, we propose a fast BA algorithm to identify the
optimal beam by using the correlation structure and the prior knowledge.

3.4.1 Correlation Structure among Beams

Consider a cyclic undirected graph 𝐺 = (B, 𝐸) , and its vertex B stands for the
beams. Let (𝑏𝑖 , 𝑏𝑖+1) ∈ 𝐸 denote the edge that connects neighboring beams 𝑏𝑖 and
𝑏𝑖+1. In addition, (𝑏𝑁 , 𝑏1) ∈ 𝐸 indicates that the last beam 𝑏𝑁 and the first beam 𝑏1
are neighbors since their beam orientations are close to each other. The unimodality
structure is defined as follows.

Definition 3.1 (Unimodality) Let 𝑏𝑖★ denote the optimal beam in𝐺. The unimodal-
ity structure indicates that,∀𝑏𝑖 ∈ B, there exist a path, (𝑏𝑖 , 𝑏𝑖+1, ..., 𝑏𝑖★), along which
the mean reward is strictly increasing.

In other words, the unimodality structure means that there is no local optimal beam
over the beam space. Then, our purpose is to prove that the correlation structure
among beams follows the above unimodality structure. Consider the single-path
channel, where 𝑔 and 𝜗 represent the channel gain and channel spatial angle of the
path, respectively. With (3.4), the mean RSS is given by

E [𝑟 (𝑏𝑖)] = 𝑃
��h𝐻w𝑖

��2 + 𝑁𝑜𝑊
=
𝑃𝑔2

𝑁

��x𝐻 (𝜗)x(𝜔𝑖)��2 + 𝑁𝑜𝑊
=
𝑃𝑔2

𝑁

�����𝑁−1∑︁
𝑛=0

𝑒 𝑗
2𝜋𝑑
_
𝑛(𝜔𝑖−𝜗)

�����2 + 𝑁𝑜𝑊
=
𝑃𝑔2

𝑁
𝐷 (𝜔𝑖 − 𝜗) + 𝑁𝑜𝑊,∀𝑏𝑖 ∈ B

(3.7)

where

𝐷 (𝑥) = sin2 (𝑁𝜋𝑑𝑥/_)
sin2 (𝜋𝑑𝑥/_)

(3.8)



3.4 Fast Beam Alignment Scheme 45

denotes the antenna directivity function, which depends on the angular misalignment
𝑥. Hence, the mean RSS is a function of angular misalignment 𝜔𝑖 − 𝜗.

Theorem 3.1 In the single-path channel, the mean reward (RSS) over the beam space
is a unimodal function.

Proof According to (3.7), the maximum RSS can be achieved with the minimum
angular misalignment denoted by, 𝛿 = 𝜔𝑖★ −𝜗, where 𝜔𝑖★ is the spatial angle for the
optimal transmit beam. Hence, 𝐷 (𝜔𝑖 − 𝜗) can be rewritten as

𝐷 (𝜔𝑖 − 𝜗) = 𝐷
(
𝛿 + 2(𝑖 − 𝑖★)

𝑁

)
=

sin2 (𝑁𝜋𝑑𝛿/_)

sin2
(
𝜋𝑑

(
𝛿 + 2(𝑖−𝑖★)

𝑁

)
/_

) ,∀𝑏𝑖 ∈ B. (3.9)

From (3.9), 𝐷 (𝜔𝑖 − 𝜗) monotonically increases in [𝑖◦, 𝑖★] and decreases in [𝑖★, 𝑖★ +
𝑁
2 ], where 𝑖◦ = 𝑖★− 𝑁2 . Hence, the mean RSS function over the beam space increases

along path (𝑏𝑖◦ , 𝑏𝑖◦+1, ..., 𝑏𝑖★) and decreases along path (𝑏𝑖★ , 𝑏𝑖★+1, ..., 𝑏𝑖◦−1), i.e.,
𝑟 (𝑏𝑖◦ ) < 𝑟 (𝑏𝑖◦+1) < ... < 𝑟 (𝑏𝑖★) > ... > 𝑟 (𝑏𝑖◦−2) > 𝑟 (𝑏𝑖◦−1). With the definition of
the unimodality structure, the mean RSS function is unimodal over the beam space
in the single-path channel. Hence, Theorem 3.1 is proved. �

The linear combination of several unimodal functions is a multimodal function,
which means that there exist several local optimums.

Corollary 3.1 In the multipath channel, the mean reward (RSS) over the beam space
is a multimodal function. The dominant peak of the multimodal function is caused
by the LOS path, while other peaks are caused by NLOS paths.

Proof Similar to (3.7), the mean of the RSS in the multipath channel is represented
by

E [𝑟 (𝑏𝑖)] =
𝑃𝑔2

0
𝑁
𝐷 (𝜔𝑖 − 𝜗0)︸               ︷︷               ︸

LOS component

+
𝐿−1∑︁
𝑙=1

𝑃𝑔2
𝑙

𝑁
𝐷 (𝜔𝑖 − 𝜗𝑙)︸                    ︷︷                    ︸

NLOS component

+𝑁𝑜𝑊
(3.10)

From this equation, it can be observed that the aggregated RSS consists of one
LOS component and several NLOS components. For each individual path of the
mmWave channel, the corresponding RSS function is a unimodal function based on
Theorem 3.1. Therefore, the RSS function in the multipath channel is a collection of
several unimodal functions, which can be considered as a multimodal function. In
particular, there are 𝐿 paths in the mmWave channel, corresponding to 𝐿 peaks in
the multimodal function. As the channel gain of the LOS path is significantly larger
than that of NLOS paths, i.e., 𝑔2

0 > 𝑔2
𝑙
. Hence, the dominant peak corresponds to

the LOS path while other peaks correspond to NLOS paths. Thus Corollary 3.1 is
proved. �



46 3 Machine Learning Based Beam Alignment in mmWave Networks

20 40 60 80 100 120

Beam Index

-80

-75

-70

-65

-60

-55

-50

-45

-40

S
ig

n
a

l 
S

tr
e

n
g

th
 (

d
B

m
)

Nosiy RSS

Mean RSS

LOS component

NLOS component

Fig. 3.3: The RSS function over the beam space in a two-path channel with 128
beams. The peak value generates by the LOS link is around 10 dB higher than that
generated by the NLOS link.

Figure 3.3 illustrates the RSS function over the beam space in a two-path channel.
Actually, the RSS is noisy because of the channel fluctuation. We observe that the
mean RSS function follows the multimodality structure. For a two-path mmWave
channel, there are two peaks in the mean RSS function, the dominant peak is due
to the LOS path and another smaller peak is due to the NLOS path. Moreover,
the multimodality structure has been observed in many in-field measurements in
mmWave systems, which further validates our theoretical results.

Remark 3.1 According to theoretical analysis, we can conclude that the RSS
depends on the angular misalignment. The angular misalignment varies grad-
ually across adjacent beams, so the values of the RSS of nearby beams are
close to each other, as a result, neighbouring beams are highly correlated.
Besides, due to the multipath nature of channel, the RSS function exhibits the
multimodality structure, which can be utilized to accelerate the convergence
speed of the BA process.
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3.4.2 Prior Knowledge of mmWave Networks

In addition to the aforementioned correlation structure, other prior knowledge can
also be exploited to further accelerate the BA process. Since the reward is affected
by wireless environments, the channel fluctuation statistics reflects the underlying
information of the wireless environments. The utilization of channel fluctuation
statistics can help to better accommodate the reward uncertainty, thereby reducing
the exploration. Specifically, we assume that the channel fluctuation variance 𝜎2

is known a priori to speed up the BA process. In practice, such prior knowledge
can be obtained in the system initialization phase before the BA process is invoked.
Practical mmWave systems also collect the variance of channel fluctuation peri-
odically. Besides, since the channel statistical information changes slowly in static
environments, there is no need to frequently collect the information. Note that the
proposed algorithm works even with coarse prior knowledge at the expense of slower
convergence or lower beam detection accuracy, which is presented in Section 3.6.

3.4.3 Learning Based Beam Alignment Algorithm

As mentioned earlier, the mean reward function exhibits the multimodality struc-
ture, so we improve and extend the hierarchical optimistic optimization (HOO)
algorithm [33] to the BA problem. Due to the lack of prior knowledge, HOO de-
velops a large confidence margin to adopt to the reward uncertainty, which leads to
slower convergence. Similar to the famous Bayesian principles [34], we use the prior
knowledge to obtain an appropriate confidence margin to further accelerate the con-
vergence without unnecessary exploration. The proposed HBA algorithm is sketched
in Algorithm 3.4.3. Specifically, 𝐵𝑒𝑟 (𝑝) represents a Bernoulli distribution with a
parameter 𝑝, and 𝑙𝑒𝑎 𝑓 (T ) represents the leaf node of a tree T in the algorithm.

Theoretical analysis shows that if a beam performs well, its nearby beams are also
highly likely to perform well. The proposed algorithm is built upon the correlation
structure among beams, and its core idea is to conduct dense exploration around
good beams and loose exploration in others. To this end, a search tree is constructed,
the nodes of which are associated with search regions. Deeper nodes represent
smaller search regions, as an illustrative example shown in Fig. 3.4. The algorithm
runs in discrete time slots and constructs a binary tree incrementally. At each time
slot, the node selection process selects a new node and adds it to the search tree.
Once selected, the beam located in the selected node is measured, and then the
corresponding reward is observed. Afterwards, the attributes of the search tree are
updated based on the newly observed reward. In this way, the algorithm intelligently
narrows the search region until the optimal beam is identified. It is worth noting that
selecting a new node means exploring the region related to the node, while the search
tree explores the region based on previously selected beams and observed rewards.

Next, we elaborate on the algorithm. In the initialization phase, the beam space,
B, is mapped to a region X = [0, 1], which is evenly partitioned by each beam.
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Algorithm 1 HBA algorithm.
Input: Z , 𝜌1, 𝛾, and 𝜎2;
Output: 𝑏★;
1: Initialization: Set T = {(0, 1) }, 𝑄2,1 = 𝑄2,2 = +∞, 𝑥𝐿 = 0, and 𝑥𝐻 = 1;
2: (ℎ, 𝑗) ← (0, 1) , P ← {(ℎ, 𝑗) };
3: B New node selection
4: while (ℎ, 𝑖) ∈ T𝑡 do
5: if 𝑄ℎ+1,2 𝑗−1 (𝑡) > 𝑄ℎ+1,2 𝑗 (𝑡) then
6: (ℎ, 𝑗) ← (ℎ + 1, 2 𝑗 − 1);
7: Update 𝑥𝐿 = 𝑥𝑎;
8: else if 𝑄ℎ+1,2 𝑗−1 (𝑡) < 𝑄ℎ+1,2 𝑗 (𝑡) then
9: (ℎ, 𝑗) ← (ℎ + 1, 2 𝑗);

10: Update 𝑥𝐻 = 𝑥𝑎;
11: else
12: (ℎ, 𝑗) ← (ℎ + 1, 2 𝑗−𝐵𝑒𝑟 (0.5));
13: Update the search region;
14: end
15: (𝐻𝑡 , 𝐽𝑡 ) ← (ℎ, 𝑗);
16: T𝑡+1 = T𝑡 ∪ {(𝐻𝑡 , 𝐽𝑡 ) };
17: end
18: (𝐻𝑡 , 𝐽𝑡 ) ← (ℎ, 𝑗);
19: T𝑡+1 = T𝑡 ∪ {(𝐻𝑡 , 𝐽𝑡 ) };
20: B Attributes update
21: Measure the beam located in the center 𝐶𝐻𝑡 ,𝐽𝑡 and observe the reward 𝑟 𝑡 ;
22: Update 𝑁ℎ, 𝑗 (𝑡) and 𝑅ℎ, 𝑗 (𝑡) , ∀(ℎ, 𝑗) ∈ P, with (3.11) and (3.12), respectively;
23: Update 𝐸ℎ, 𝑗 (𝑡) , ∀(ℎ, 𝑗) ∈ T𝑡 , with (3.13);
24: 𝑄𝐻+1,2𝐽−1 (𝑡) = 𝑄𝐻+1,2𝐽 (𝑡) = +∞;
25: T̂ = T𝑡 ;
26: for (ℎ, 𝑗) ∈ T̂ do
27: (ℎ, 𝑗) ← 𝑙𝑒𝑎 𝑓 ( T̂);
28: Update 𝑄ℎ, 𝑗 (𝑡) with (3.14);
29: T̂ ← T̂ \ (ℎ, 𝑗);
30: end
31: B Terminating condition
32: if 𝑥𝐻 − 𝑥𝐿 < Z /𝑁 then
33: Terminate beam search and select current beam 𝑏★;
34: end

Similarly, the RSS function, 𝑟 (𝑏𝑖),∀𝑏𝑖 ∈ B, is mapped to a normalized reward
function, 𝑓 (𝑥),∀𝑥 ∈ X, within [0, 1]. At the beginning, the search tree T only
contains a root node (0, 1). The node in the tree is represented by (ℎ, 𝑗), where
ℎ denotes the depth from the root node and 𝑗 , 1 ≤ 𝑗 ≤ 2ℎ denotes the index at
depth ℎ. In addition, each node in the tree is associated with a region. Let 𝐶ℎ, 𝑗
represent the region of (ℎ, 𝑗). Specifically, the root node represents the entire region,
i.e., 𝐶0,1 = [0, 1]. Let (ℎ + 1, 2 𝑗 − 1) and (ℎ + 1, 2 𝑗) denote the left and the right
child node of (ℎ, 𝑗), respectively. Two child nodes partition the region of their
parent node. Consider 𝐶ℎ, 𝑗 = [𝑥𝐿 , 𝑥𝐻 ], the left child node is associated with a
region 𝐶ℎ+1,2 𝑗−1 = [𝑥𝐿 , 𝑥𝑎] and the right child node is associated with a region
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𝐶ℎ+1,2 𝑗 = [𝑥𝑎, 𝑥𝐻 ], where 𝑥𝑎 = 𝑥𝐿 + (𝑥𝐻 − 𝑥𝐿) /2 is the middle point of 𝐶ℎ, 𝑗 . At
time slot 𝑡, HBA consists of the following three phases:

1. New node selection. In this phase, a new node is firstly selected. Let T𝑡 denote
the tree at time 𝑡. Starting from the root node, we compare the estimated rewards
(denote by Q-values) of two children at each time slot until a new node (𝐻𝑡 , 𝐽𝑡 ) ∉ T𝑡
is selected. Specifically, HBA traverses the tree first and selects the child with a
higher Q-value, and breaks ties randomly (Lines 4-14). The selected node is added
to the tree, i.e., T𝑡+1 = T𝑡 ∪{(𝐻𝑡 , 𝐽𝑡 )}, and the path from the root node to the selected
node is stored in P.

2. Attributes update. This stage is performed to update the attributes of all nodes in
the tree. For the selected node in the previous phase, measure the beam at the center
of 𝐶𝐻𝑡 ,𝐽𝑡 and get the corresponding reward 𝑟𝑡 . According to the newly observed
reward, the estimated mean reward 𝑄ℎ, 𝑗 (𝑡) is updated as follows.

• Firstly, as the new node is the descendant of all the nodes in path P, 𝑁ℎ, 𝑗 (𝑡),
which represents the number of times that (ℎ, 𝑗) has been selected until time slot
𝑡, is updated by

𝑁ℎ, 𝑗 (𝑡) = 𝑁ℎ, 𝑗 (𝑡 − 1) + 1,∀(ℎ, 𝑗) ∈ P . (3.11)

• Secondly, 𝑅ℎ, 𝑗 (𝑡) represents the mean measured reward of (ℎ, 𝑗) up to time slot
𝑡, which is updated by

𝑅ℎ, 𝑗 (𝑡) =
(
𝑁ℎ, 𝑗 (𝑡) − 1

)
𝑅ℎ, 𝑗 (𝑡 − 1) + 𝑟 𝑡

𝑁ℎ, 𝑗 (𝑡)
,∀(ℎ, 𝑗) ∈ P . (3.12)

• Thirdly, for each node in the tree, the initial estimated reward 𝐸ℎ, 𝑗 (𝑡) is updated
by,

𝐸ℎ, 𝑗 (𝑡) =
{
𝑅ℎ, 𝑗 (𝑡) +

√︃
2𝜎2 log 𝑡
𝑁ℎ, 𝑗 (𝑡) + 𝜌1𝛾

ℎ , if 𝑁ℎ, 𝑗 (𝑡) > 0
+∞, otherwise

(3.13)

where
√︃

2𝜎2 log 𝑡
𝑁ℎ, 𝑗 (𝑡) is the confidence margin for adapting the uncertainty of rewards.

As mentioned before, we use the prior knowledge of the variance of channel
fluctuation and adopt the Bayesian principle to design the confidence margin.
The term 𝜌1𝛾

ℎ accounts for the maximum variation of the mean reward function
over 𝐶ℎ, 𝑗 , where 𝜌1 > 0 and 𝛾 ∈ (0, 1). This term is due to the bounded diameter
assumption, which is discussed later in Section 3.5. The values of 𝜌1 and 𝛾 are
selected based on extensive simulation trials. For a binary tree case, the value 𝛾 is
typically set to be 0.5 [33]. It should be noted that E-values of all the unexplored
nodes are set to infinity.

• Finally, for each node in the tree, the estimated mean reward, 𝑄ℎ, 𝑗 (𝑡), should be
recursively updated through the following bound
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𝑄ℎ, 𝑗 (𝑡) =
{

min{𝐸ℎ, 𝑗 (𝑡) ,max{𝑄ℎ+1,2 𝑗−1 (𝑡) , 𝑄ℎ+1,2 𝑗 (𝑡)}}, if 𝑁ℎ, 𝑗 (𝑡) > 0
+∞, otherwise.

(3.14)
This bound depends on two terms. The first term, 𝐸ℎ, 𝑗 (𝑡), is an upper bound for
𝑄ℎ, 𝑗 (𝑡) due to the definition of 𝐸-values. The second term, i.e.,

max{𝑄ℎ+1,2 𝑗−1 (𝑡) , 𝑄ℎ+1,2 𝑗 (𝑡)}

is another valid upper bound of 𝑄ℎ, 𝑗 (𝑡). Since 𝐶ℎ, 𝑗 = 𝐶ℎ+1,2 𝑗−1 ∪ 𝐶ℎ+1,2 𝑗−1,
the maximum value between the Q-values in two subsets is the upper bound of
Q-value in the union set. Combining these two items can get a tighter upper bound
by taking the minimum of these two items. Note that Q-values should be updated
from the leaf node of the tree, because Q-values of child nodes form the upper
bound of their parent node (Lines 21-27).

3. Terminating condition. Over time, the depth of the tree increases and the
search area gradually shrinks. When the search region is sufficiently small, i.e.,
𝑥𝐻 − 𝑥𝐿 < Z/𝑁 where 0 < Z < 1, the BA process is terminated and the beam
located in the final region is selected as the optimal beam. The value of Z should be
carefully selected on the basis of extensive simulation trials. It is worth noting that
the larger the value of Z , the faster the convergence speed and the lower the beam
detection accuracy.

Remark 3.2 For better understanding of the HBA, we provide two illustrative
examples as follows.

1. As shown in Fig. 3.4, HBA operates similarly to a “zooming process”. At
the beginning, the search region is the entire region evenly divided by the
beams. As time goes by, the search region is adaptively partitioned, and the
algorithm gradually zooms to the region containing the optimal beam.

2. The sequentially selected beams in the BA process are depicted in Fig. 3.5.
The selected beams are divided into three batches according to the timeline.
The first batch of beams are randomly positioned throughout the area. The
second batch of beams get closer to the dominant peak. The last batch is
mainly concentrated around the optimal beam. We notice that the algorithm
performed intensive exploration in areas containing good beams, while it
performed less exploration in other areas.
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Fig. 3.4: The proposed algorithm operates in a “zooming” manner.
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Fig. 3.5: The region that contains the dominant peak is explored intensively, while
others are explored loosely.

3.5 Theoretical Analysis

3.5.1 Algorithm Complexity Analysis

At time slot 𝑇 , T𝑡 contains 𝑇 nodes as the tree increments by one node at each time
slot. Therefore, the storage complexity of the proposed algorithm is linear, i.e.,𝑂 (𝑇).
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In addition, the attributes of all the nodes in the tree should be updated at each time
slot, and hence the running time at each time slot is also linear. As the algorithm runs
𝑇 time slots, the computational complexity of the HBA algorithm is quadratic, i.e.,
𝑂 (𝑇2). Because of the terminating condition, the tree is a finite tree, so the storage
complexity and computational complexity are bounded.

3.5.2 Cumulative Regret Performance Analysis

In this section, we analyze the upper bound on the cumulative regret for the pro-
posed algorithm. In order to facilitate regret analysis, we make the following two
assumptions.

Assumption Weak Lipschitz: For any 𝑥 around the optimal 𝑥★, there exist constants
𝑐𝐻 > 0 and 𝛼 > 0 such that

𝑓★ − 𝑓 (𝑥) ≤ 𝑐𝐻 ‖𝑥★ − 𝑥‖𝛼 . (3.15)

This hypothesis shows that the reward function satisfies the week Lipschitz condition,
which can avoid the sharp valleys of high regret near the optimal point. Moreover,
the weak Lipschitz condition is mild, which only affects the region near the optimal
value. This assumption has been proved in many practical applications [21].

Assumption

1. Bounded diameter: For a region, 𝐶ℎ, 𝑗 , of depth ℎ, the diameter of the region is
defined as 𝐷 (𝐶ℎ, 𝑗 ) = max

𝑥,𝑦∈𝐶ℎ, 𝑗

𝑞(𝑥, 𝑦), where 𝑞(𝑥, 𝑦) = 𝑤‖𝑥 − 𝑦‖𝛽 represents the

dissimilarity between 𝑥 and 𝑦. The diameter of the region is upper bounded by
𝜌1𝛾

ℎ for constants 𝜌1 > 0 and 0 < 𝛾 < 1.
2. Well-shaped region: For a region, 𝐶ℎ, 𝑗 , of depth ℎ, the region contains a ball

with a radius of 𝜌2𝛾
ℎ which locates in the center of 𝐶ℎ, 𝑗 .

The bounded diameter condition is to upper bound the maximum variation of
𝑓 (𝑥) within the region 𝐶ℎ, 𝑗 . On the contrary, the well-shaped region condition is to
lower bound the minimum variation of 𝑓 (𝑥) within the region 𝐶ℎ, 𝑗 . Note that any
region in the reward function satisfies the bounded diameter and well-shaped region
conditions [33]. These conditions are used to derive the accumulated regret in the
following analysis.

Definition 3.2 𝜖-optimal: Let 𝑓★
ℎ, 𝑗

= max
𝑥∈𝐶ℎ, 𝑗

𝑓 (𝑥) be the optimal reward in 𝐶ℎ, 𝑗 . If

𝑓★
ℎ, 𝑗

> 𝑓★ − 𝜖ℎ, 𝑗 , 𝐶ℎ, 𝑗 is the 𝜖ℎ, 𝑗 -optimal region.

For example, if 𝜖ℎ, 𝑗 = 0, 𝐶ℎ, 𝑗 is the optimal region where the optimal value 𝑥★
locates. Otherwise, if 𝜖ℎ, 𝑗 > 0, 𝐶ℎ, 𝑗 is a sub-optimal region. Let 𝜖ℎ, 𝑗 represent the
suboptimality of (ℎ, 𝑗).

To obtain the regret bound, we first provide the following lemma.
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Lemma 3.1 For any node (ℎ, 𝑗) whose suboptimality is larger than 𝜌1𝛾
ℎ , the ex-

pected number of times that (ℎ, 𝑗) has been visited until time slot𝑇 , is upper bounded
by

E
[
𝑁ℎ, 𝑗 (𝑇)

]
≤ 8𝜎2 log𝑇(

𝜖ℎ, 𝑗 − 𝜌1𝛾ℎ
)2 + 𝑐 (3.16)

where 𝑐 is a constant.

Proof For any integer 𝑚 > 0, according to the definition, the average times that
node (ℎ, 𝑗) has been visited up to time slot 𝑇 , is given by

E
[
𝑁ℎ, 𝑗 (𝑇)

]
= E

[
𝑇∑︁
𝑡=1

1(𝐻𝑡 ,𝐽𝑡 ) ∈𝐶ℎ, 𝑗

]
= E

[
𝑇∑︁
𝑡=1

1{(𝐻𝑡 ,𝐽𝑡 ) ∈𝐶ℎ, 𝑗 ,𝑁ℎ, 𝑗 (𝑡) ≤𝑚}

]
+ E

[
𝑇∑︁
𝑡=1

1{(𝐻𝑡 ,𝐽𝑡 ) ∈𝐶ℎ, 𝑗 ,𝑁ℎ, 𝑗 (𝑡)>𝑚}

]
≤ 𝑚 + E

[
𝑇∑︁

𝑡=𝑚+1
1{(𝐻𝑡 ,𝐽𝑡 ) ∈𝐶ℎ, 𝑗 ,𝑁ℎ, 𝑗 (𝑡)>𝑚}

]
= 𝑚 +

𝑇∑︁
𝑡=𝑚+1

P
(
(𝐻𝑡 , 𝐽𝑡 ) ∈ 𝐶ℎ, 𝑗 , 𝑁ℎ, 𝑗 (𝑡) > 𝑚

)
.

(3.17)

where 1{·} is the indicator function and (𝐻𝑡 , 𝐽𝑡 ) ∈ 𝐶ℎ, 𝑗 denotes the selected node
(𝐻𝑡 , 𝐽𝑡 ) located within 𝐶ℎ, 𝑗 . The first equality holds because 𝑁ℎ, 𝑗 (𝑡) > 𝑚 only
occurs when 𝑡 is larger than 𝑚.

We apply a case study to obtain an upper bound of E
[
𝑁ℎ, 𝑗 (𝑇)

]
. Assume node

(ℎ, 𝑗) is selected at time slot 𝑡. The path from root node (0, 1) to (ℎ, 𝑗) is given by

P = {(0, 1), (1, 𝑗★1 ), ..., (𝑘, 𝑗
★
𝑘 ), (𝑘 + 1, 𝑗𝑜𝑘+1), ..., (ℎ, 𝑗)}

where 𝑘 denotes the largest depth of the optimal node in the path. Before node
(𝑘, 𝑗★

𝑘
), the optimal nodes are selected. For notation simplicity, we omit the time

slot 𝑡 in 𝑄𝑘, 𝑗 (𝑡). After traversing node (𝑘, 𝑗★
𝑘
), a sub-optimal node (𝑘 + 1, 𝑗𝑜

𝑘+1) is
selected instead of the optimal node (𝑘 +1, 𝑗★

𝑘+1), because the suboptimal node has a
larger 𝑄-value than the optimal node, i.e., 𝑄𝑘+1, 𝑗𝑜 ≥ 𝑄𝑘+1, 𝑗★ . As 𝑄-values increase
along path P, we have

𝑄𝑘+1, 𝑗★ ≤ 𝑄𝑘+1, 𝑗𝑜
𝑘+1
≤, ..., ≤ 𝑄ℎ, 𝑗 .

Note that 𝑄-values are upper bounded by 𝐸-values according to the definition, such
that 𝑄𝑘+1, 𝑗★ ≤ 𝐸ℎ, 𝑗 . Further, event 𝑄𝑘+1, 𝑗★ ≤ 𝐸ℎ, 𝑗 can be interpreted as the union
of two events, {𝑄𝑘+1, 𝑗★ ≤ 𝑓★} ∪ {𝐸ℎ, 𝑗 ≥ 𝑓★}. Hence, the probability that (𝐻𝑡 , 𝐽𝑡 )
locates within 𝐶ℎ, 𝑗 is upper bounded by
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P
(
(𝐻𝑡 , 𝐽𝑡 ) ∈ 𝐶ℎ, 𝑗

)
≤ P

(
𝑄𝑘+1, 𝑗★ ≤ 𝑓★

)
+ P

(
𝐸ℎ, 𝑗 ≥ 𝑓★

)
. (3.18)

With the definition of Q-value, the𝑄-value of a node is the minimum value among
the 𝐸-value of the node and𝑄-values of its child nodes. Hence, event {𝑄𝑘+1, 𝑗★ ≤ 𝑓★}
can be interpreted as the union of two new events, i.e.,

{𝐸𝑘+1, 𝑗★ ≤ 𝑓★} ∪ {𝑄𝑘+2, 𝑗★
𝑘+2
≤ 𝑓★}.

Event {𝑄𝑘+2, 𝑗★
𝑘+2
≤ 𝑓★} can be further recursively expanded as

𝑡−1⋃
𝑠=𝑘+2
{𝐸𝑠, 𝑗★𝑠 ≤ 𝑓★}.

Hence, we have

P
(
𝑄𝑘+1, 𝑗★ ≤ 𝑓★

)
≤

𝑡−1∑︁
𝑠=𝑘+1

P
(
𝐸𝑠, 𝑗★𝑠 ≤ 𝑓★

)
. (3.19)

Substituting (3.19) and (3.18) into (3.17), we have

E
[
𝑁ℎ, 𝑗 (𝑇)

]
≤ 𝑚 +

𝑇∑︁
𝑡=𝑚+1

(
𝑡−1∑︁
𝑠=𝑘+1

P
(
𝐸𝑠, 𝑗★ (𝑡) ≤ 𝑓★

)
+P

(
𝐸ℎ, 𝑗 (𝑡) ≥ 𝑓★, 𝑁ℎ, 𝑗 (𝑡) > 𝑚

) )
.

(3.20)

The following analysis is to bound the three terms in (3.20) separately.
Firstly, since𝑚 is an arbitrary integer, taking𝑚 as the smallest integer that satisfies

the condition
𝑚 ≥ 8𝜎2 log𝑇(

𝜖ℎ, 𝑗 − 𝑐1𝛾ℎ
)2 .

Hence, 𝑚 is bounded by

𝑚 ≤ 8𝜎2 log𝑇(
𝜖ℎ, 𝑗 − 𝜌1𝛾ℎ

)2 + 1. (3.21)

Secondly, we aim to bound the first term P
(
𝐸𝑠, 𝑗★ ≤ 𝑓★

)
. For the optimal nodes

(ℎ, 𝑗★), according to the definition of 𝐸-values, 𝐸ℎ, 𝑗★ = ∞ when 𝑁ℎ, 𝑗★ = 0. Hence,
event 𝐸ℎ, 𝑗★ ≤ 𝑓★ only occurs when 𝑁ℎ, 𝑗 ≥ 1. As a result, P

(
𝐸ℎ, 𝑗★ ≤ 𝑓★

)
can be

rewritten as
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P
(
𝐸ℎ, 𝑗★ ≤ 𝑓★, 𝑁ℎ, 𝑗 ≥ 1

)
= P

(
𝑅ℎ, 𝑗★ +

√︄
2𝜎2 log 𝑡
𝑁ℎ, 𝑗★

+ 𝜌1𝛾
ℎ ≤ 𝑓★, 𝑁ℎ, 𝑗★ ≥ 1

)
= P

((
𝑓★ − 𝑅ℎ, 𝑗★ − 𝜌1𝛾

ℎ
)
𝑁ℎ, 𝑗★ ≥

√︃
2𝜎2𝑁ℎ, 𝑗★ log 𝑡, 𝑁ℎ, 𝑗★ ≥ 1

)
(𝑎)
= P

(
𝑡∑︁
𝑠=1

(
𝑓★ − 𝑓 (𝑋𝑠) + 𝜌1𝛾

ℎ
)
1(𝐻𝑡 ,𝐽𝑡 ) ∈𝐶ℎ, 𝑗★

+
𝑡∑︁
𝑠=1
( 𝑓 (𝑋𝑠) − 𝑌𝑠) 1(𝐻𝑡 ,𝐽𝑡 ) ∈𝐶ℎ, 𝑗★

≥
√︃

2𝜎2𝑁ℎ, 𝑗★ log 𝑡, 𝑁ℎ, 𝑗★ ≥ 1

)
(𝑏)
≤ P

(
𝑡∑︁
𝑠=1
( 𝑓 (𝑋𝑠) − 𝑌𝑠) 1(𝐻𝑡 ,𝐽𝑡 ) ∈𝐶ℎ, 𝑗★

≥
√︃

2𝜎2𝑁ℎ, 𝑗★ log 𝑡, 𝑁ℎ, 𝑗★ ≥ 1

)
(𝑐)
= P

©«
𝑁ℎ, 𝑗★∑︁
𝑝=1

(
𝑌𝑝 − 𝑓 ( �̃�𝑝)

)
≥

√︃
2𝜎2𝑁ℎ, 𝑗★ log 𝑡, 𝑁ℎ, 𝑗★ ≥ 1ª®¬ .

(3.22)

In (3.22), the first step follows from the definition of E-value in (3.13); (𝑎) is obtained
from the definition of 𝑁ℎ, 𝑗★ , where 𝑋𝑠 ,∀𝑠 = 1, 2, ..., 𝑡 − 1 denotes the sequentially
selected beams up to time 𝑡−1 and the corresponding reward sequence is represented
by 𝑌𝑠; (𝑏) follows from the fact that 𝑓★ − 𝑓 (𝑋𝑡 ) − 𝜌1𝛾

ℎ < 0 holds for all the beams
in the optimal region 𝐶ℎ, 𝑗★; (𝑐) is because the definition of a new beam selection
sequence �̂�𝑝 ,∀𝑝 = 1, 2, 3, ... whose corresponding reward sequence is 𝑌𝑝 .

Let 𝑇𝑝 = min{𝑡 : 𝑁ℎ, 𝑗 (𝑡) = 𝑝} represent the time sequence for the selected
node in𝐶ℎ, 𝑗 . The sequentially selected beams can be represented by a new sequence
�̂�𝑝 = 𝑋𝑇𝑝 ,∀𝑝 = 1, 2, 3, ..., and (3.22) can be further bounded by

P
©«
𝑁ℎ, 𝑗★

ℎ∑︁
𝑝=1

(
𝑌𝑝 − 𝑓 ( �̃�𝑝)

)
≥

√︃
2𝜎2𝑁ℎ, 𝑗★ log 𝑡, 𝑁ℎ, 𝑗★

ℎ
≥ 1

ª®®¬
(𝑎)
≤

𝑡∑︁
𝑠=1
P
©«
𝑠∑︁
𝑝=1

(
𝑌𝑝 − 𝑓 ( �̃�𝑝)

)
≥

√︃
2𝜎2𝑠 log 𝑡ª®¬

(𝑏)
≤

𝑡∑︁
𝑠=1

exp
(
−4𝜎2𝑠 log 𝑡

𝑠𝜎2

)
= 𝑡−3.

(3.23)

In (3.23), (𝑎) can be acquired via the union bound that takes all possible values
of 𝑁ℎ, 𝑗★

ℎ
; as �̃� 𝑝 = 𝑌𝑝 − 𝑓 ( �̃�𝑝) can be considered as martingale differences, (𝑏) is

obtained via the Hoeffding-Azuma inequality [33]

P
©«
𝑘∑︁
𝑝=1

�̃� 𝑝 ≥ 𝑡
ª®¬ ≤ exp

(
− 2𝑡2∑𝑘

𝑝=1 𝜎
2

)
. (3.24)
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Thirdly, for suboptimal nodes (ℎ, 𝑗), the upper bound of P
(
𝐸ℎ, 𝑗 ≥ 𝑓★, 𝑁ℎ, 𝑗 > 𝑚

)
can be obtained via a similar method of bounding P

(
𝐸ℎ, 𝑗★ ≤ 𝑓★, 𝑁ℎ, 𝑗 ≥ 1

)
, such

that

P
(
𝐸ℎ, 𝑗 ≥ 𝑓★, 𝑁ℎ, 𝑗 > 𝑚

)
= P

(
𝑅ℎ, 𝑗 +

√︄
2𝜎2 log 𝑡
𝑁ℎ, 𝑗

+ 𝜌1𝛾
ℎ ≥ 𝑓★ℎ, 𝑗 + 𝜖ℎ, 𝑗 , 𝑁ℎ, 𝑗 > 𝑚

)
(𝑎)
≤ P

(
𝑅ℎ, 𝑗 ≥ 𝑓★ℎ, 𝑗 +

𝜖ℎ, 𝑗 − 𝜌1𝛾
ℎ

2
, 𝑁ℎ, 𝑗 > 𝑚

)
= P

((
𝑅ℎ, 𝑗 − 𝑓★ℎ, 𝑗

)
𝑁ℎ, 𝑗 ≥

𝜖ℎ, 𝑗 − 𝜌1𝛾
ℎ

2
𝑁ℎ, 𝑗 , 𝑁ℎ, 𝑗 > 𝑚

)
= P

(
𝑡∑︁
𝑠=1

(
𝑌𝑠 − 𝑓★ℎ, 𝑗

)
1(𝐻𝑠 ,𝐽𝑠) ∈𝐶ℎ, 𝑗

≥ 𝑁ℎ, 𝑗
𝜖ℎ, 𝑗 − 𝜌1𝛾

ℎ

2
, 𝑁ℎ, 𝑗 > 𝑚

)
≤ P

(
𝑡∑︁
𝑠=1
(𝑌𝑠 − 𝑓 (𝑋𝑠)) 1(𝐻𝑠 ,𝐽𝑠) ∈𝐶ℎ, 𝑗

≥ 𝑁ℎ, 𝑗
𝜖ℎ, 𝑗 − 𝜌1𝛾

ℎ

2
, 𝑁ℎ, 𝑗 > 𝑚

)
(𝑏)
= P

©«
𝑁ℎ, 𝑗∑︁
𝑝=1

(
𝑌𝑝 − 𝑓 ( �̂�𝑝)

)
≥ 𝑁ℎ, 𝑗

𝜖ℎ, 𝑗 − 𝜌1𝛾
ℎ

2
, 𝑁ℎ, 𝑗 > 𝑚

ª®¬

(3.25)

In (3.25), (𝑎) due to the substitution of 𝑁ℎ, 𝑗 (𝑡) ≥ 8𝜎2 log 𝑡
( 𝜖ℎ, 𝑗−𝜌1𝛾ℎ)2

where 𝑚 ≥
8𝜎2 log 𝑡
( 𝜖ℎ, 𝑗−𝜌1𝛾ℎ)2

; (𝑏) is obtained via a similar method as (3.22)(𝑐), where a new beam

sequence {�̂�1, �̂�2, ..., �̂�𝑝} is formed to represent the sequentially selected beams in
𝐶ℎ, 𝑗 . Next, (3.25) can be further bounded by

P
©«
𝑁ℎ, 𝑗∑︁
𝑝=1

(
𝑌𝑝 − 𝑓 ( �̂�𝑝)

)
≥ 𝑁ℎ, 𝑗

𝜖ℎ, 𝑗 − 𝜌1𝛾
ℎ

2
, 𝑁ℎ, 𝑗 > 𝑚

ª®¬
(𝑎)
≤

𝑡∑︁
𝑘=𝑚+1

P
©«
𝑘∑︁
𝑝=1

(
𝑌𝑝 − 𝑓 ( �̂�𝑝)

)
≥
𝑘 (𝜖ℎ, 𝑗 − 𝜌1𝛾

ℎ)
2

ª®¬
(𝑏)
≤

𝑡∑︁
𝑘=𝑚+1

exp

(
−
𝑘

(
𝜖ℎ, 𝑗 − 𝜌1𝛾

ℎ
)2

2𝜎2

)
≤ 𝑡 exp

(
−
𝑚

(
𝜖ℎ, 𝑗 − 𝜌1𝛾

ℎ
)2

2𝜎2

)
(𝑐)
≤ 𝑡 exp (−4 log𝑇)
= 𝑡𝑇−4.

(3.26)
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In (3.26), (𝑎) holds due to a similar union bound in (3.23)(a); (𝑏) is obtained via the
Hoeffding-Azuma inequality; (𝑐) is obtained via the substitution of𝑚 ≥ 8𝜎2 log𝑇

( 𝜖ℎ, 𝑗−𝜌1𝛾ℎ)2
.

Finally, substituting (3.21), (3.23) and (3.26) into (3.20), the upper bound is given
by

E
[
𝑁ℎ, 𝑗 (𝑇)

]
≤ 8𝜎2 log𝑇(

𝜖ℎ, 𝑗 − 𝜌1𝛾ℎ
)2 + 1 +

𝑇∑︁
𝑡=𝑚+1

(
𝑡−1∑︁
𝑘+1

𝑡−3 + 𝑡𝑇−4

)
≤ 8𝜎2 log𝑇(

𝜖ℎ, 𝑗 − 𝜌1𝛾ℎ
)2 + 1 +

𝑇∑︁
𝑡=1

(
𝑡−2 + 𝑇−3

)
≤ 8𝜎2 log𝑇(

𝜖ℎ, 𝑗 − 𝜌1𝛾ℎ
)2 + 𝑐

(3.27)

where 𝑐 is a constant. The last step is because
∑𝑇
𝑡=1 𝑡

−2 is bounded. Hence, Lemma
3.1 is proved. �

Remark 3.3 From Lemma 3.1, the number of visits of sub-optimal nodes in-
creases logarithmically with time, which means that the cumulative regret of
the proposed algorithm is sub-linear. In addition, the number of times that
a suboptimal node has been visited, depends on the variance of the channel
fluctuation. A larger variance of the channel fluctuation implies a more noisy
wireless environment, resulting in more exploration efforts to eliminate the
reward uncertainty.

Based on above lemma, an upper bound is obtained below.

Theorem 3.2 The upper bound on the cumulative regret of HBA is

𝑅𝜋 (𝑇) = 𝑂
(√︁
𝑇 log𝑇

)
. (3.28)

Proof All nodes with depth ℎ can be divided into two subsets: Φℎ that denotes the
set of all the 2𝜌1𝛾

ℎ-optimal nodes, and Ωℎ that denotes the set of nodes whose
parents belong to Φℎ−1 while itself does not belong to Φℎ . Let 𝐻 ≥ 1 be an integer
whose value is determined later. Based on the above definition, T can be divided into
three subtrees: T1, T2, and T3. Let T1 contain Φ𝐻 and its decedents. Let T2 include all

the 2𝜌1𝛾
ℎ-optimal nodes at all the depths smaller than 𝐻, i.e., T2 =

𝐻−1⋃
ℎ=1

Φℎ . Let T3

include all the nodes in Ωℎ at all the depths smaller than 𝐻, i.e., T3 =
𝐻⋃
ℎ=1

Ωℎ . Hence

the cumulative regret can be partitioned as
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𝑅𝜋 (𝑇) = E [𝑅𝜋 (T1)] + E [𝑅𝜋 (T2)] + E [𝑅𝜋 (T3)] (3.29)

where

E [𝑅𝜋 (T𝑖)] = E
[
𝑇∑︁
𝑡=1

(
𝑓★ − 𝑓 (𝑋𝑡 )

)
1{(𝐻𝑡 ,𝐽𝑡 ) ∈T𝑖 }

]
.

Next, the regret analysis follows the idea of bounding the regret on each subtree
separately.

Step 1: Bounding the regret on T1. As each node in Φ𝐻 is 2𝜌1𝛾
𝐻 -optimal, all

the beams located in Φ𝐻 are 4𝜌1𝛾
𝐻 -optimal, i.e., 𝑓★ − 𝑓 (𝑋𝑡 ) ≤ 4𝜌1𝛾

𝐻 , 𝑋𝑡 ∈ Φ𝐻 .
In addition, it is obvious that the number of nodes in subtree T1 is smaller than the
time horizon, i.e., |T1 | ≤ 𝑇 where | · | represents the cardinality operator. Therefore,
the regret on T1 is upper bounded by

E [𝑅𝜋 (T1)] ≤ 4𝜌1𝛾
𝐻𝑇. (3.30)

Step 2: Bounding the regret on T2. As T2 =
𝐻−1⋃
ℎ=1

Φℎ and each beam in Φℎ is

4𝜌1𝛾
ℎ-optimal, the regret on T2 can be written as

E [𝑅𝜋 (T2)] ≤
𝐻−1∑︁
ℎ=1

4𝜌1𝛾
ℎ |Φℎ |.

Based on the results in [33], we have |Φℎ | ≤ 𝑐1
(
𝜌2𝛾

ℎ
)−^ where ^ = 1

𝛽
− 1

𝛼
.

Specifically, 𝛼 and 𝛽 are given in the weak Lipschitz assumption and bounded
diameter assumption respectively. The regret on T2 can be further bounded by

E [𝑅𝜋 (T2)] ≤
𝐻−1∑︁
ℎ=1

4𝜌1𝛾
ℎ𝑐1

(
𝜌2𝛾

ℎ
)−^

= 4𝜌1𝑐1𝜌
−^
2

𝐻−1∑︁
ℎ=0

𝛾ℎ (1−^)

≤
4𝜌1𝑐1𝜌

−^
2

1 − 𝛾1−^ .

(3.31)

From (3.31), we can see that E [𝑅𝜋 (T2)] is upper bounded by a constant as T2 is a
finite tree.

Step 3: Bounding the regret on T3. For each node in Ωℎ , its parents should be
included byΦℎ−1. Thus, all the beams inΩℎ are 4𝜌1𝛾

ℎ−1-optimal and the cardinality
of Ωℎ is smaller than 2|Φℎ−1 |. Besides, with the results in Lemma 3.1, we have

E
[
𝑁ℎ, 𝑗 (𝑡)

]
=

8𝜎2 log 𝑡(
𝜌1𝛾ℎ

)2 + 𝑐

for any 2𝜌1𝛾
ℎ−1-optimal nodes. Thus, the regret on T3 is given by
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E [𝑅𝜋 (T3)] ≤
𝐻∑︁
ℎ=1

4𝜌1𝛾
ℎ−12|Φℎ−1 |E

[
𝑁ℎ, 𝑗 (𝑇)

]
≤ 8𝜌1𝑐1𝜌

−^
2

𝐻∑︁
ℎ=1

𝛾 (ℎ−1) (1−^)

(
8𝜎2 log𝑇(
𝜌1𝛾ℎ

)2 + 𝑐
)
.

(3.32)

Finally, substituting (3.30), (3.31) and (3.32) into (3.29), we have

𝑅𝜋 (𝑇) ≤ 4𝜌1𝛾
𝐻𝑇 +

4𝜌1𝑐1𝜌
−^
2

1 − 𝛾1−^

+ 8𝜌1𝑐1𝜌
−^
2

𝐻∑︁
ℎ=1

𝛾 (ℎ−1) (1−^)

(
8𝜎2 log𝑇(
𝜌1𝛾ℎ

)2 + 𝑐
)

= 𝑂

(
𝛾𝐻𝑇 + log𝑇𝛾−𝐻 (1+^)

)
= 𝑂

(
𝑇

^+1
^+2 (log𝑇)

1
^+2

)
.

(3.33)

The last step is obtained from setting 𝛾𝐻 as the order of (𝑇/log𝑇)−1/(^+2) [33]. If
the smoothness of the function is known, we can set 𝛼 = 𝛽 such that ^ = 0 [33].
Hence, (3.33) can be rewritten as 𝑂

(√︁
𝑇 log𝑇

)
, the theorem is proved. �

Remark 3.4 Theorem 3.2 indicates the expected cumulative regret of HBA is
sublinear in the time horizon 𝑇 , i.e.,

lim
𝑇→∞

𝑅𝜋 (𝑇)
𝑇

= 0.

Since the regret of each slot decreases over time, the proposed algorithm
is asymptotically optimal. Hence, the proposed algorithm converges to the
optimal beam over time. Moreover, for finite time horizon 𝑇 , the regret bound
characterizes the convergence speed of the proposed algorithm.

3.6 Performance Evaluation

3.6.1 Simulation Setup

We simulate an IEEE 802.11ad system operating at 60 GHz with a bandwidth of
2.16 GHz [35,36]. Consider an outdoor scenario, such as university campus, unless
otherwise specified, the transmission distance between the transmitter and receiver
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Table 3.2: Simulation parameters in beam alignment.

Parameter Value
Noise spectrum density (𝑁𝑜) −174 dBm/Hz

System bandwidth (𝑊 ) 2.16 GHz
Carrier frequency ( 𝑓 ) 60 GHz
Path loss exponent ( b ) 1.74

Shadowing fading variance (𝜎) 2 dB
Signal range [−80, −20] dBm

SSW frame duration (𝑇𝑆𝑆𝑊 ) 15.8 us
Beacon interval duration (𝑇𝐵𝐼 ) 100 ms

Number of beams (𝑁 ) {8-512}
Effective isotropically radiated power (𝑃𝑒) 50 dBm

Number of paths (𝐿) {1-5}
Algorithm parameters (𝜌1, 𝛾) (3, 0.5)

Terminating condition threshold (Z ) 0.1
Time horizon (𝑇 ) 1000 time slots

Extra NLOS path loss 𝑈 (7, 13) dB
Transmission distance (𝑑) 20 m
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Fig. 3.6: Cumulative regret performance in the single-path channel.

is set to 20 meters. The average effective isotropically radiated power (EIRP) 𝑃𝑒
is fixed at 50 dBm1, which is in line with FCC regulations for 60 GHz unlicensed
bands [37, 38]. Taking into account the directional antenna gain, the transmit power
is 𝑃 = 𝑃𝑒 − 10 log10 𝑁 . For instance, the transmit powers are set to around 32 dBm
and 23 dBm for the 64 and 512 antenna arrays, respectively. It should be noted that

1 For outdoor applications with the high antenna gain, the average EIRP limit is up to 82 dBm [37].
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Fig. 3.7: Cumulative regret performance in the multipath channel.

the mmWave channel is sparse, therefore we set the maximum number of channel
paths to 5, including one dominant LOS path and four NLOS paths. For the LOS
path, the path loss is modeled as

𝑃𝐿 (𝑑𝐵) = 32.5 + 20 log10 ( 𝑓 ) + 10b log10 (𝑑) + 𝜒 (3.34)

where 𝑓 , b, 𝑑, and 𝜒 represent the carrier frequency, path loss exponent, transmission
distance, and shadow fading, respectively. The shadow fading follows 𝑁 (0, 𝜎2)
where 𝜎 is set to be 2 dB [39]. Note that the channel fluctuation in the simulation
is mainly caused by the shadow fading. In addition, according to practical in-field
measurements, NLOS paths suffer around 10 dB more path loss than the LOS
path [31]. We assume that the extra NLOS path loss follows a uniform distribution
within [7, 13] dB. Furthermore, for the HBA algorithm, the RSS within [−80,−20]
dBm is mapped to a reward within [0, 1]. The algorithm parameters, 𝜌1, 𝛾, and Z are
set to 3, 0.5, and 0.1, respectively, based on extensive simulation trials. Important
simulation parameters are listed in Table 3.2. We evaluate the performance via
Monte-Carlo simulations. Simulation results are averaged under 50,000 samples in
different channel fading and locations. The proposed HBA algorithm is compared to
the following benchmarks:

• Exhaustive search algorithm: this approach scans all the combination of trans-
mitter and receiver beam pair, whose search complexity is 𝑂 (𝑁2).
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Fig. 3.8: Impact of channel distribution and variance.

• IEEE 802.11ad [40]: In this industrial method, one side (transmitter or receiver)
scans the beam space, while the other side keeps omni-directional. The corre-
sponding beam measurement complexity is 𝑂 (𝑁).

• UCB [32]: The celebrated algorithm selects the beam without exploiting
both correlation structure and prior knowledge. The confidence margin is
[𝑢

√︁
2 log 𝑡/𝑁𝑏𝑖 (𝑡), where the learning rate [𝑢 is set to be 0.2.

• Unimodal beam alignment (UBA) [3]: The algorithm exploits the unimodal
structure among beams to perform BA. Hence, it works in a “hill-climbing"
manner, which selects the best beam among the neighboring beams at each time
slot.

• HOO [33]: The algorithm use beam correlation to select the beam instead of the
prior knowledge. The confidence margin is [ℎ

√︁
2 log 𝑡/𝑁ℎ, 𝑗 (𝑡) + 𝑐1𝛾

ℎ , where the
learning rate [ℎ is set to be 0.1.

3.6.2 Cumulative Regret

The proposed algorithm is compared with other benchmarks in different channels
for 𝑁 = 128. Fig. 3.6 presents the cumulative regret over time in the single-path
channel. It can be clearly seen that the proposed HBA algorithm significantly out-
performs other benchmarks in terms of BA overhead. In addition, Fig. 3.7 shows the
cumulative regret performance in two-path channels. We can get several significant
observations from the simulation results. At first, HBA conspicuously outperforms
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Fig. 3.9: Cumulative regret with respect to number of paths.

other benchmarks. The observed “bounded regret” behaviour is consistent with the
theoretical results in Theorem 3.2. Then, HBA converges much faster than other
benchmarks. Specifically, since HBA exploits both correlation structure and prior
information to accelerate the BA process, while other benchmarks only exploit cor-
relation structure or not, HBA only takes around 25 time slots to converge to the
optimal beam. Interestingly, over time, the performance of UBA algorithm is even
worse than the BA method in IEEE 802.11ad which does not utilize the correlation
structure. This is because the UBA algorithm is designed based on the unimodal
structure among beams, while the reward function evolves to a multimodal structure
in the multipath channel. The consequence of such model mismatch is much worse
than not utilizing the correlation structure at all.

We further evaluate the impact of the channel fluctuation distribution on the regret
performance in Fig. 3.8. In order to evaluate the dependency of Gaussian distribution,
we compared the performance of two widely adopted non-Gaussian distributions,
uniform distribution and Rayleigh distribution. The performance under non-Gaussian
settings is very close to that under the Gaussian distribution, which means that the
proposed algorithm can be applied in various settings. Fig. 3.8 also illustrates the
influence of the channel fluctuation variance (𝜎2). As expected, the cumulative regret
increases as the variance increases, because more exploration efforts are required in
highly fluctuated channels.

Finally, we evaluate the HBA algorithm with different number of paths in Fig. 3.9.
Obviously, the accumulated regret only slightly grows as the number of paths in-
creases, because more beams should be explored in the more sophisticated channel.
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Fig. 3.10: Number of beam measurements in the single-path channel. Error bars
show the 90 percentile performance.
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Fig. 3.11: Number of beam measurements in the multipath channel.

More importantly, we prove the effectiveness and robustness of the algorithm under
multipath channels.
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Fig. 3.12: Beam detection accuracy in the multipath channel.

3.6.3 Measurement Complexity and Beam Detection Accuracy

The regret performance only reflects the bounded fact of regret, not necessarily
the actual performance. Next, we use the following two metrics to evaluate the
performance of HBA: the number of measurements and beam detection accuracy.

We first evaluate the scalability of the proposed algorithm with the number of
beams, as shown in Fig. 3.10. It is evident that the proposed algorithm significantly
reduces the required number of measurements as compared to other benchmarks.
For a small number (𝑁 = 32) of beams, the number of measurements of proposed
algorithm is about 2 times less than that of the 802.11ad benchmark. In addition,
the proposed algorithm achieves a higher performance gain in the case of a larger
number of beams. For instance, in the case of a large number (𝑁 = 512) beams,
the proposed algorithm only needs around 40 measurements to identify the optimal
beam, while the 802.11ad benchmark requires 12 times more attempts. The reason
is that the proposed algorithm only needs to explore a few beams by leveraging the
correlation structure and the prior knowledge while the BA approach in 802.11ad
needs to explore all the beams. The results validate that the proposed algorithm is a
scalable solution even with a large number of beams.

We further study the performance in the multipath channel. Due to the inherent
sparse characteristics of the mmWave channel, the number of paths ranges from
1 to 5. Firstly, the numbers of measurements in terms of the number of paths are
compared in Fig. 3.11. It can be concluded that, as the number of paths increases,
the number of measurements increases slightly. For example, for a 128-beam case,
the number of measurements in the five-path channel increases by 15% compared
to that in the single-path channel. Secondly, beam detection accuracy performance
is presented in Fig. 3.12. The HBA algorithm detects the optimal beam with a high
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Fig. 3.13: Number of measurements performance comparison with respect to trans-
mission distance in two-path channels.
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Fig. 3.14: Beam detection accuracy performance comparison with respect to trans-
mission distance in two-path channels.

probability, even in sophisticated multipath channels. Simulation results show that
even in the worst case, the beam detection accuracy can reach more than 97%. In
addition, the beam detection accuracy slightly decreases as the number of paths
increases. For a large number (𝑁 = 256) of beams, the beam detection accuracy
drops from 99.6% of single-path channel to 97.4% of five-path channel due to the
complex multipath channel.
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Fig. 3.15: Number of measurements performance comparison with coarse prior
knowledge in two-path channels.

Figures 3.13 and 3.14 illustrates the impact of the transmission distance on the
performance. We first observe that the number of measurements increases in terms
of the transmission distance, as shown in Fig. 3.13. Specifically, the number of mea-
surements increases by 32% as distance increases from 5 meters to 50 meters for
𝑁 = 128. Because the RSS is weaker for a longer distance such that limited informa-
tion can be extracted from nearby beams. Hence, the proposed algorithm needs to
explore more beams to identify the optimal beam for remote users. Even for remote
users, the proposed BA algorithm performs better than the 802.11ad benchmark.
When the distance increases to 50 meters, our algorithm requires approximately 44
measurements for 𝑁 = 256, which still reduces the number of measurements by 5.8
times compared with the 802.11ad benchmark. Finally, the beam detection accuracy
is presented in Fig. 3.14. Even in the low SNR case, the proposed algorithm can
detect the optimal beam with a high probability.

For implementation consideration, Figs. 3.15 and 3.16 presents the performance
of HBA under coarse prior knowledge conditions. Define the ratio of estimated
variance (𝜎2

𝑒 ) to accurate variance as a measure of the coarse prior knowledge, i.e.,

[ =
𝜎2
𝑒

𝜎2

Therefore, the coarse prior knowledge can be divided into two categories: the under-
estimated prior knowledge when [ < 1 and the overestimated prior knowledge when
[ > 1. We can observe from Fig. 3.15 that the number of measurements increases
as [ increases from 0.25 to 4. Specifically, for a 256-beam case, the HBA algorithm
with the overestimated prior knowledge for [ = 4 requires more beam measure-
ments than the HBA algorithm with accurate prior knowledge. In order to adapt to
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Fig. 3.16: Beam detection accuracy performance comparison with coarse prior
knowledge in two-path channels.

the uncertainty of the reward, overestimating the prior knowledge leads to a larger
confidence margin, which requires more exploration efforts to obtain better beam
detection accuracy, as shown in Fig. 3.16. On the contrary, when prior knowledge is
underestimated, the number of measurements is slightly smaller than that with accu-
rate prior knowledge, while the beam detection accuracy reduces due to insufficient
exploration efforts. More importantly, even with the coarse prior knowledge, the
proposed algorithm can substantially reduce the number of measurements compared
with benchmarks, and achieve high beam detection accuracy. For a 256-beam case,
even in the worst case, the proposed algorithm reduces the number of measurements
by 6 times in comparison with the BA method in 802.11ad.

3.6.4 Beam Alignment Latency

Practical BA latency needs to take the 802.11ad protocol into consideration, which
is different from a simple product of the number of measurements and the duration
of each measurement. In the protocol, BA must be carried out in the associated
beamforming training (A-BFT) stage, which contains 8 A-BFT slots, and each A-
BFT slot contains 16 sector sweep (SSW) frames. Each SSW frame can only provide
one measurement for one beam and the duration is about 15.8 us [40]. If the BA
process cannot be completed in the A-BFT stage of the current beacon interval (BI),
this BA process has to wait for the A-BFT stage in the next BI, which increases
the BA delay of the entire BI duration. In the simulation, the duration of BI is set
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Table 3.3: BA latency comparison in the multipath channel.

One user Four-user
𝑁 802.11ad HBA 802.11ad HBA
8 0.25 ms 0.25 ms 0.63 ms 0.63 ms
16 0.51 ms 0.45 ms 1.26 ms 1.12 ms
32 1.01 ms 0.56 ms 2.53 ms 1.39 ms
64 2.02 ms 0.61 ms 103.03 ms 1.53 ms
128 4.04 ms 0.71 ms 304.04 ms 1.78 ms
256 106.07 ms 0.88 ms 706.07 ms 2.21 ms

to 100 ms [40]. With the above protocol, BA latency is calculated based on the
average number of measurements. Table 3.3 presents the BA latency with different
numbers of beams in the two-path channel. As expected, the BA latency increases as
the number of beams increases. For the case of only one user, compared to the BA
method in 802.11ad, the proposed algorithm reduces the BA latency significantly.
In particular, for a large number (𝑁 = 256) of beams, the BA latency drops from
106.07 ms to only 0.88 ms. This is because the BA process of the proposed algorithm
requires only a small amount of measurements to identify the optimal beam, and
thus can be completed in one BI. Furthermore, we can observe a larger performance
gain in the four-user case. In contrast to the BA method in 802.11ad which incurs
more than 700 ms latency for a 256-beam phase arrays, the proposed algorithm takes
about 2.21 ms, which corresponds to two orders of magnitude gain.

3.7 Summary

In this chapter, we have investigated the BA problem in mmWave systems to find
the optimal beam pair. We developed HBA, a learning algorithm which uses the
inherent correlation structure among beams and the prior knowledge on the channel
fluctuation to speed up the BA process. The proposed HBA algorithm can utilize
a small number of beam measurements to identify the optimal beam with a high
probability, even in the case of a large number of beams.
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Chapter 4
Beamforming Training Protocol Design and
Analysis

Abstract In this chapter, we present beamforming training protocol design and anal-
ysis for both single-user transmission and multiuser transmission scenarios. Firstly,
in the single-user transmission scenario, we focus on the current 802.11ad standard
analyzing its beamforming training performance from a perspective of the medium
access control (MAC) layer. Specifically, we present a simple yet accurate analytical
model to evaluate MAC performance. Based on the analytical model, we derive
the closed-form expressions of average successful beamforming training probability,
normalized throughput, and beamforming training latency. Particularly, asymptotic
analysis indicates that the maximum normalized throughput of BFT-MAC is barely
1/𝑒. Moreover, we introduce an enhancement scheme which adaptively adjusts the
MAC parameters in tune with user density, to improve MAC performance in dense
user scenarios. Extensive simulation results validate the accuracy of the presented
analytical model and the effectiveness of the introduced enhancement scheme. Sec-
ondly, in the multiuser transmission scenario, since 802.11ad only serves one user
at a time, we present a novel 802.11ad-compliant multiuser beamforming training
protocol to facilitate multiuser transmission in millimeter-wave networks. Then, we
analyze the overhead of the presented multiuser beamforming training protocol.
Simulation results show that the effectiveness of the presented protocol as compared
to the benchmark protocol.

4.1 Introduction

Millimeter-wave (mmWave) band communication, particularly at the unlicensed
60 GHz frequency band, has received considerable attention due to its application
in short-range indoor scenarios, such as wireless personal area networks (WPANs)
and wireless local area networks (WLANs). For example, the IEEE 802.15.3c stan-
dard is ratified for mmWave communication in WPANs, and the IEEE 802.11ad
standard is ratified for mmWave communication in WLANs. Both of them operate
at the unlicensed 60 GHz frequency band. Although mmWave communication can

73
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offer high data rate transmission, it suffers from severe free-space path loss due to
operating at a high frequency band [1–3]. Beamforming technology which focuses
the radio frequency power in a narrow direction, is adopted at both the transmitter
and receiver to compensate for the huge path loss in mmWave communication. As
reliable communication is only possible when the beamforming of both the trans-
mitter and receiver are properly aligned, a beamforming training process between
the transmitter and receiver is needed. Without the beamforming training process,
the data rate of mmWave communications would drop from several Gbps to only
a few hundred Mbps [4, 5]. Therefore, designing an efficient beamforming training
scheme is significant for mmWave communication.

In the literature, a few recent works have investigated beamforming training
schemes, e.g., codebook-based beam search [6], compressed sensing schemes [7],
and out-of-band solutions [8]. With recent trend of leveraging advanced machine
learning methods to address wireless networking problems [9, 10], some machine
learning based solutions are also developed for low-complexity beamforming train-
ing or beam alignment [11,12]. Even though the existing works can greatly enhance
beamforming training performance, they focus on investigating the performance from
a perspective of the physical layer. However, the medium access control (MAC) layer
is also very important for beamforming training performance. The contention feature
of the MAC layer is seldom considered in previous works, i.e., the multiple stations
(STAs) compete for the same beamforming training time.1 Even with efficient beam-
forming training schemes, a coarse MAC protocol would result in severe collisions
for beamforming training, which wastes the cherished beamforming training time
and incurs extra beamforming training latency. Hence, the elaborate analysis and tai-
lored enhancement of the MAC protocol for beamforming training are of paramount
importance.

IEEE 802.11ad specifies a new distributed beamforming training MAC protocol,
namely BFT-MAC protocol, which can coordinate beamforming training among
multiple STAs. Specifically, the duration of beamforming training is divided into
multiple associated beamforming training (A-BFT) slots. All active STAs in the
coverage contend for these A-BFT slots in a contention and backoff manner in order to
obtain a beamforming training opportunity. However, the performance of BFT-MAC
in dense user scenarios is still unclear. This is due to the following two reasons: (1)
Due to the “deafness” problem caused by beamforming (i.e., directional antennas),
i.e., an STA may not sense the transmission of other STAs. As such, the BFT-MAC
protocol is different from the traditional carrier sensing based MAC protocols in
microwave WLANs. Hence, existing analytical models for traditional microwave
WLANs cannot applied for the BFT-MAC protocol; and (2) Previous work in [13]
investigate and simulate the MAC performance with a finite number of STAs, which
can hardly provide theoretical insights for dense user scenarios. Therefore, we argue
that a thorough new analytical model for the BFT-MAC protocol is necessary and
significant. Furthermore, only at most eight A-BFT slots are provided in 802.11ad
standard, and the collision probability is extremely high in dense user scenarios due

1 In this chapter, we use the word “STA” and “user” interchangeably.
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to the lack of A-BFT slots. The severe collision results in low throughput and high
beamforming training latency. Thus, it is required to design an enhancement scheme
on 802.11ad to improve the performance in dense user scenarios. The aforementioned
MAC performance analysis and enhancement are designed for the existing 802.11ad
standard. Hence, the first issue focuses on improving the beamforming training
efficiency for single-user transmission, i.e., only one user transmits data at one time.

In addition to single-user transmission, to further enhance date rates, multiuser
transmission schemes that enable the concurrent transmission of multiple users
are desired. Multiuser transmission is expected to be adopted in next-generation
mmWave WLAN, i.e., 802.11ay. To achieve multiuser beamforming in mmWave
networks, hybrid beamforming is considered as a low-complexity strategy [14].
Specifically, hybrid beamforming consists of an analog beamforming part and a
digital beamforming part. The analog beamforming part aims to provide directional
antenna gain by controlling the transmitted signal phase at each antenna, while the
digital beamforming part aims to mitigate multiuser inference by judiciously de-
signing a proper baseband beamforming matrix. Theoretical results have proved that
hybrid beamforming can achieve close-to-optimal performance as compared with
fully digital beamforming while significantly reducing implementation complex-
ity [15]. Thus, designing an 802.11ad-compliant multiuser beamforming protocol
based on hybrid beamforming methods and analyzing the overhead of the designed
protocol are very important for further improving data rate for future mmWave
networks. The second issue focuses on designing and analyzing the beamforming
training protocol for enabling multiuser transmission.

In this chapter, we focus on addressing the above two issues. Specifically, this
chapter can be divided into two parts. The first part is for the single-user transmis-
sion scenario, which is to analyze and enhance beamforming training performance
from the perspective of the MAC protocol. The second part is for the multiuser
transmission scenario, which is to design a novel multiuser beamforming training
protocol and analyze its performance from the perspective of supporting multiuser
transmission.

In the first part, we focus on the MAC performance analysis and enchantment for
the current 802.11ad BFT-MAC. We try to answer the following two questions: (1)
How good the performance of BFT-MAC is? and (2) How to further enhance the per-
formance of BFT-MAC in dense user scenarios? Firstly, a two-dimensional Markov
chain based analytical model, which models the number of consecutive collisions and
the backoff time as a state, is presented to evaluate the BFT-MAC performance. The
presented analytical model can unveil the relationship among the number of A-BFT
slots, the number of STAs, and MAC parameters on the BFT-MAC performance.
Secondly, given the analytical model, the closed-form expressions of the normalized
throughput and beamforming training latency are derived theoretically, respectively.
Moreover, asymptotic analysis in dense user scenarios indicates that the normalized
throughput depends on the ratio between the number of STAs and the number of
A-BFT slots. Particularly, theoretical analysis indicates that maximum normalized
throughput is barely 1/𝑒, which is the same as the slotted ALOHA protocol. Thirdly,
since the performance substantially degrades in dense user scenarios due to the lim-
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itation of A-BFT slots in practical mmWave networks, we discuss an enhancement
scheme which adaptively adjusts MAC parameters according to the user density to
improve MAC performance. Extensive simulation results demonstrate that the en-
hancement scheme can significantly improve the normalized throughput and reduce
the beamforming training latency, as compared to 802.11ad with the default protocol
parameter configuration.

In the second part, we focus on the multiuser beamforming protocol design
and analysis. We target at answering the following question: How to design a mul-
tiuser beamforming training protocol and analyze its performance? Specifically, a
multiuser beamforming training protocol is first introduced to support the hybrid
beamforming algorithm based on 802.11ad. Secondly, we analyze the overhead of
the introduced multiuser beamforming training protocol as well as the throughput
gain. Particularly, theoretical analysis demonstrates that beamforming training over-
head increases linearly with the number of users, which can diminish throughput
gain when the number of users is large. Extensive simulations are conducted to val-
idate the effectiveness of the introduced multiuser beamforming training protocol.
Simulation results show that the throughput gain increases and then decreases with
the increase of the number of users. Thus, our observation suggests that there exists
an optimal number of users that hybrid beamforming enabled mmWave networks
should support.

The remainder of this chapter is organized as follows. For the first part, an
overview of beamforming training schemes is presented in Section 4.2. Then, we
show beamforming training protocol in 802.11ad from a perspective of the MAC
layer in Section 4.3. The presented analytical model, the corresponding perfor-
mance analysis, and the introduced enhancement scheme are given in Section 4.4.
In Section 4.5, extensive simulations are conducted to validate the presented analyt-
ical model and the enhancement scheme. For the second part, we design a multiuser
beamforming training protocol based on hybrid beamforming algorithms and analyze
its beamforming training overhead in Section 4.6. Simulations results are provided
to demonstrate the presented protocol’s performance performance in Section 4.7.
Finally, Section 4.8 concludes this chapter.

4.2 Existing Works on Beamforming Training

In the following, we present the existing works on beamforming training schemes
and MAC performance analysis of beamforming training protocol in Section 4.2.1
and Section 4.2.2, respectively.
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4.2.1 Beamforming Training Schemes

In the literature, there are a large amount of efforts on developing efficient beamform-
ing training schemes in mmWave networks. The authors proposed a codebook-based
search scheme in [6]. In the proposed scheme, the beamwidth of beamforming is
adjusted in each step until the optimal beam is identified. To support multiuser trans-
mission, a low-complexity hybrid beamforming algorithm is developed in [16]. The
hybrid beamforming algorithm is a combination of analog beamforming and digital
beamforming, which can reduce implementation complexity. By utilizing the sparse
characteristic of mmWave channels, the authors developed a compressed sensing
based beamforming training method with a low complexity [7]. Some out-of-band
schemes were developed in [8], which can exploit traditional WiFi signals to reduce
beamforming training overhead. In another direction, by utilizing the multi-armed
beam feature of directional antennas, the authors proposed a fast beamforming train-
ing scheme [17]. While the above works can enhance the beamforming training
efficiency, these works do not consider the contentions of multiple STAs in the
beamforming training protocol. Different from these works, our work in this chapter
concentrates on studying beamforming training performance from a perspective of
the MAC layer.

4.2.2 MAC Performance Analysis

In the literature, the MAC performance of different protocols has been widely in-
vestigated. The MAC protocols in traditional microwave networks have been widely
analyzed in various scenarios based on the celebrated Bianchi’s model [18], such as
highly mobility vehicular networks [19, 20], mobile ad hoc networks [21], Internet-
of-Things networks [22], and wireless body area networks (WBANs) [23]. A pio-
neering three-dimensional Markov chain analytical model is proposed to investigate
the 802.11 distributed coordinate function (DCF) performance in the drive-through
vehicular networks [19]. On this basis, taking practical access procedures into con-
sideration, an extended work investigated the throughput performance of the drive-
through vehicular networks [20]. In addition, taking the impact of interference into
consideration, the authors developed an analytical model for analyzing MAC perfor-
mance in WBANs [23]. Although these works in [18–23] show insightful lights on the
MAC performance analysis in microwave systems, they focus on the omni-directional
system. Due to the adoption of beamforming technology, 802.11ad WLANs are di-
rectional communication systems. Hence, the legacy of MAC analytical models in
omni-directional systems cannot be applied.

Several recent works devoted to analyzing MAC performance in directional
802.11ad WLANs. The authors analyzed the impact of the number of sectors in
the directional transmission in [24]. Another work proposed a directional coopera-
tive MAC protocol and analyzed its performance in [25]. However, the above works
in [24, 25] focus on the MAC performance in the data transmission stage. In con-
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trast, the MAC performance in the beamforming training stage is seldom considered,
which is the bottleneck of the whole system. The following work in the first part
focuses on the MAC performance in the beamforming training stage.

Some works in [13, 26–29] focus on improving the MAC performance in the
beamforming training stage. A pioneering work [13] proposed a secondary backoff
scheme in the A-BFT stage to alleviate beamforming training collisions in dense
user scenarios. In this work, each STA selects not only a backoff A-BFT slot but
also a secondary backoff time within the A-BFT slot. With this method, transmission
collisions can be reduced. The authors leveraged the channel sparsity in the mmWave
channel to develop a compressed sensing method to perform beamforming training
simultaneously for a group of STAs in [26]. In addition to these works, multiple
standardization efforts have been devoted to enhancing the MAC performance in the
beamforming training stage. The authors in [27] spread out the access attempt over
time. As such, the high collision issue can be addressed in dense user networks.
Another standardization draft in [28] allowed beamforming training simultaneously
for different STAs over multiple channels, thereby enhancing beamforming training
efficiency. But this scheme may increase the protocol signalling overhead. In another
draft, a short sector sweep (SSW) frame structure is proposed in [29]. The short
SSW has a shorter packet length, as compared to a traditional SSW frame, which can
increase the beamforming training capability in the 802.11ad standard since more
short SSW frames can be included in an A-BFT slot. While these works can provide
efficient solutions on enhancing MAC performance in the beamforming training
stage, they more or less need to modify the MAC protocol. Hence, these works may
be incompatible with the current 802.11ad standard.

In contrast, the following work in Sections 4.3 and 4.4 in the first part focuses on
an in-depth understanding of the 802.11ad MAC protocol for beamforming training
instead of proposing new MAC protocols with distinguished features. The underlying
reason is two-fold. Firstly, as the most practical and adopted standard in mmWave
WLANs, the 802.11ad standard is widely used in many commercial off-the-shelf
(COTS) devices. Secondly, the future 802.11ay standard is highly envisioned to
adopt a similar MAC protocol for beamforming training as 802.11ad. Specifically,
802.11ay would have an increased number of A-BFT slots [30, 31]. Hence, the
performance of 802.11ay can be analyzed based on the proposed analytical model
with some customized modification.

4.3 Beamforming Training Protocol in 802.11ad

In the following, we first present the beamforming training procedure in the 802.11ad
standard in Section 4.3.1, and then we introduce the BFT-MAC protocol in detail in
Section 4.3.2.
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Beacon interval  # t-1 Beacon interval  # t Beacon interval  # t+1

BTI A-BFT ATI DTI

A-BFT slot #1 A-BFT slot #2 A-BFT slot #M…

SSW SSW SSW…

SSW-
FBAP

STA

Directional
transmit beam

Omni-directional 
receive beam

time

Fig. 4.1: The 802.11ad beacon interval format. An illustrative example of the beam-
forming training procedure is provided in the dashed square area.

4.3.1 Beamforming Training Procedure

A WLAN compliant with the 802.11ad standard is considered in this work, which
consists of an access point (AP) and multiple STAs. The AP is in charge of coor-
dinating beamforming training, link scheduling, and network synchronization. Both
the AP and STAs adopt the directional multi-gigabit mode, which means that each
node is equipped with an electrically steerable directional antenna to support the
directional transmission.

The beamforming training procedure is to establish reliable mmWave communi-
cation links between the AP and STAs. To this end, at the beginning of each beacon
interval (BI), an STA needs to perform beamforming training with the AP. As il-
lustrated in Fig. 4.1, the transmission time is divided into multiple BIs. Each BI is
further segregated into:

• The beacon transmission interval (BTI) stage, during which AP performs the
beamforming training with STA;

• The A-BFT stage, during which all STAs contend for beamforming training with
AP;

• The announcement transmission interval (ATI) stage, which coordinates the trans-
mission scheduling in data transmission interval (DTI);
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• The DTI stage, which facilitates directional data transmission [32]. Specifically,
the DTI consists of multiple service periods (SPs) and contention-based access
periods (CBAPs), where SPs are scheduled access periods and CBAPs are en-
hanced distributed channel access periods.

For more details, one can refer to our detailed introduction of the 802.11ad beam-
forming training protocol in Section 2.3 in Chapter 2.

This work focuses on the beamforming training in the A-BFT stage. Next, we
briefly introduce the A-BFT stage. The A-BFT stage is further divided into multiple
A-BFT slots. The A-BFT slots can provide separated beamforming training for
different STAs. The detailed beamforming training procedure between the AP and
an STA in an A-BFT slot is illustrated in Fig. 4.1. Specifically, an STA transmits
multiple SSW frames via different directional beams, and then the AP receives these
SSW frames via its omni-directional beam. The AP can identify the best transmit
beam of the STA based on the received signal strength of these directional beams.
In the following, an SSW-feedback (SSW-FB) frame is sent from the AP to the STA
for the acknowledgment of a successful beamforming training. It is worth noting that
an A-BFT slot can only provide one beamforming training opportunity for an STA.
When two STAs compete for the same A-BFT slot, a collision occurs. In this case,
no SSW-FB frame would be sent to STAs, and then the occurrence of the collision
is aware by the transmitting STAs.

Remark 4.1 It is worth noting that the above mentioned beamforming training
in A-BFT is a part of the entire beamforming training procedure in 802.11ad.
In this chapter, we focus on the performance of beamforming training from a
perspective of the MAC layer. The detailed beamforming training procedure
is beyond the scope of our study. For more details, one can refer to a detailed
survey in [33].

4.3.2 BFT-MAC Protocol

The 802.11ad specifies a distributed beamforming training MAC protocol, namely
BFT-MAC protocol, to coordinate beamforming training among multiple STAs. In
the BFT-MAC protocol, each STA performs beamforming training with the AP in a
contention and backoff manner. Specifically, the BFT-MAC protocol consists of the
following two parts:

• Before beamforming training, a random A-BFT slot is selected from the range
[1, 𝑀] by each active STA for the transmission of beamforming training packets
(referred to as a transmission for short hereinafter). Here, the number of A-BFT
slots is denoted by 𝑀 . An event of successful beamforming training depends on
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SSW-FBAP

STA A

STA B

STA C …
A-BFT slot #1 A-BFT slot #2

collision

time

SSW SSW SSW…

SSW SSW SSW…

SSW SSW SSW…

Fig. 4.2: An illustrative example of the BFT-MAC protocol. In the figure, the beam-
forming training in the A-BFT slots #1 is successful, while that in A-BFT slot #2 is
unsuccessful since this A-BFT slot is selected by two STAs simultaneously.

whether an A-BFT slot is selected by multiple STAs. If an A-BFT slot is only
selected by one STA, the transmission would succeed, and the AP would send an
SSW-FB frame to the STA. As the example shown in Fig. 4.2, the beamforming
training attempt of STA A in the A-BFT slot #1 is successful. This is because this
A-BFT slot is not selected by the other STAs. Otherwise, when multiple STAs
select the same A-BFT slot, a collision would occur, and the AP would not send
the SSW-FB frames to STAs. For example, STA B and STA C encounter a collision
in beamforming training, as shown in Fig. 4.2.

• After beamforming training, when the number of consecutive collisions that an
STA has experienced exceeds retry limit 𝑅 (referred to as dot11RSSRetryLimit
in 802.11ad), a discrete backoff time 𝑤 from the range [0,𝑊) would be selected
by the STA in a uniform manner. Here, the contention window size (referred to
as dot11RSSBackoff in 802.11ad) is denoted by 𝑊 . Specifically, a consecutive
collision counter (referred to as FailedRSSAttempts in 802.11ad) is maintained
by each STA. The counter indicates the number of consecutive collisions that the
STA has experienced in the A-BFT stage. The consecutive collision counter is
incremented by one once a collision occurs. Otherwise, the consecutive collision
counter is cleared to zero upon a successful transmission.

It is worth noting that STAs can transmit only when the backoff time is zero. The
backoff time would be decremented by one at the end of one BI. Let 𝑤 represent the
backoff time of an STA. It means that the STA has to be frozen from transmission in
the subsequent 𝑤 BIs. Due to the backoff mechanism, we know that not all STAs are
contending for A-BFT slots. Here, STAs whose backoff times are zero are referred
to as active STAs, while other STAs whose backoff times are nonzero are referred to
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Table 4.1: Summary of notations in the BFT-MAC protocol.

Notation Description
𝑝 Conditional collision probability
𝑝𝑠 Conditional successful transmission probability
𝜏 The probability that an STA is active
𝐶 (𝑡) Consecutive collision counter at time 𝑡
𝐵 (𝑡) Backoff time at time 𝑡
(𝑟 , 𝑤) State with 𝑟 consecutive collisions and 𝑤 backoff time
𝑀 Number of A-BFT slots
𝑅 Value of retry limit
𝐷 Average beamforming training latency
𝑊 Contention window size
𝑆 Normalized throughput
𝝅 Steady state probability vector
𝑇𝐵𝐼 Duration of a beacon interval
𝑇𝑆𝑆𝑊 Duration of a sector sweep frame
Z+ Positive integer set
𝐹 Number of SSW frames in an A-BFT slot

as inactive STAs. In this chapter, we assume that transmission is always successful
unless a collision occurs for simplicity.

Remark 4.2 The advantages of the BFT-MAC protocol is salient, which con-
sists of the following two:

• BFT-MAC is fully distributed which is scalable with the network size.
• The MAC protocol is simple which can be easily implemented under dif-

ferent scenarios.

However, compared with the celebrated DCF protocol in traditional omni-
directional WLANs, the absence of carrier sensing mechanism makes BFT-
MAC susceptible to collide, especially in dense user scenarios.

In what follows, the performance of BFT-MAC is analyzed.

4.4 Performance Analysis and Enhancement for BFT-MAC

In the following, we first propose a two-dimensional Markov chain based analytical
model for 802.11ad BFT-MAC in Section 4.4.1. Based on the analytical model, we
analyze the BFT-MAC performance in terms of average successful beamforming
training probability, average beamforming training latency, and network throughput,
respectively, in Section 4.4.2.
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Fig. 4.3: Two-dimensional Markov chain based analytical model for BFT-MAC.

The following key assumptions are adopted in the following analysis. Firstly, we
assume a fixed number of STAs and perfect physical channel conditions (i.e., no
transmission errors) in the considered network. Secondly, we consider the saturation
condition. In saturation condition, each STA always needs to perform beamforming
training at each BI for continuous data transmission [13,18,19]. This assumption is
reasonable in the considered mmWave networks. The underlying reason is that the
established communication connections are intermittent and short-lived due to the
user mobility and potential blockage events. As such, the beamforming training pro-
cedure would be invoked persistently. For better illustration, a summary of important
notations is listed in Table 4.1.

4.4.1 Analytical Model for BFT-MAC

The BFT-MAC protocol operates in a discrete time slotted manner. Let 𝑡 denote the
index of BIs. We examine a tagged STA to evaluate the performance of BFT-MAC.
The status of the tagged STA is represented by a two-dimensional Markov chain
{𝐶 (𝑡), 𝐵(𝑡)}. Here, 𝐶 (𝑡) ∈ [0, 𝑅] represents the number of consecutive collisions
that the tagged STA has experienced, and 𝐵(𝑡) ∈ [0,𝑊 − 1] represents the current
backoff time of the tagged STA. For instance, state (𝑟, 𝑤) means that the tagged
STA has experienced 𝑟 consecutive collisions and its current backoff time is 𝑤. Let 𝑝
denote the average collision probability of the tagged STA. It is worth noting that 𝑝 is
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the conditional collision probability. This is because the collision occurs only when
the tagged STA is active. Hence, 1 − 𝑝 denotes the average conditional successful
transmission probability. We depict the state transition diagram in Fig. 4.3.

The state transition is governed by the following events, and the corresponding
one-step transition probabilities are given as follows.

• Transmission collision: The consecutive collision counter is incremented by one
upon a transmission collision, when the counter does not exceed the retry limit. In
this case, the STA transits from state (𝑟, 0) to state (𝑟+1, 0), and the corresponding
transition probability is given by

P (𝑟 + 1, 0|𝑟, 0) = 𝑝,∀𝑟 ∈ [0, 𝑅 − 2] . (4.1)

• Successful transmission: The consecutive collision counter is cleared to zero upon
a successful transmission. In this case, the STA transits from state (𝑟, 0) to state
(0, 0) according to the following transition probability

P (0, 0|𝑟, 0) = 1 − 𝑝,∀𝑟 ∈ [0, 𝑅] . (4.2)

• Backoff time selection: The STA selects a random backoff time from interval
𝑤 ∈ [0,𝑊 − 1] when the consecutive collision counter reaches retry limit 𝑅. In
this case, the STA transits from state (𝑅 − 1, 0) to backoff state (𝑅, 𝑤), and the
corresponding transition probability is given by

P (𝑅, 𝑤 |𝑅 − 1, 0) = 𝑝

𝑊
,∀𝑤 ∈ [0,𝑊 − 1] . (4.3)

In the subsequent 𝑤 BIs, the STA would be frozen from transmission in the
A-BFT stage.

• Backoff in the frozen states: In the frozen states, the backoff time is decremented by
one after every BI. In this case, an STA transits from state (𝑅, 𝑤) to state(𝑅, 𝑤−1).
The one step transition probability is given by

P (𝑅, 𝑤 − 1|𝑅, 𝑤) = 1,∀𝑤 ∈ [1,𝑊 − 1] . (4.4)

• Transmission collision when the retry limit is reached: When the consecutive
collision counter reaches the retry limit, it would not be incremented. In this case,
once a transmission collision occurs, an STA transits from state (𝑅, 0) to state
(𝑅, 𝑤). The corresponding transition probability is given by

P (𝑅, 𝑤 |𝑅, 0) = 𝑝

𝑊
,∀𝑤 ∈ [0,𝑊 − 1] . (4.5)

Then, the tagged STA has to stay in these backoff states in the subsequent 𝑤 BIs.

It is worth noting that states whose backoff times are zero are referred to as active
states, while the other states are referred to as inactive states.

In the above state transition diagram, the steady probability of state (𝑟, 𝑤) is
defined as
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𝜋𝑟 ,𝑤 = lim
𝑡→∞
P (𝐶 (𝑡) = 𝑟, 𝐵(𝑡) = 𝑤) . (4.6)

The corresponding steady state probability of the proposed Markov chain is given
by

𝝅 = {𝜋0,0, 𝜋1,0, ..., 𝜋𝑅−1,0, 𝜋𝑅,0, 𝜋𝑅,1, ..., 𝜋𝑅,𝑊−1} ∈ R(𝑅+𝑊 )×1.

Let P ∈ R(𝑅+𝑊 )×(𝑅+𝑊 ) denote the state transition matrix whose nonnull elements are
given in (4.1)-(4.5). The 𝝅 can be obtained via mathematically solving the following
balance equations:

P𝝅 = 𝝅 (4.7a)
𝑅∑︁
𝑟=0

𝑊−1∑︁
𝑤=0

𝜋𝑟 ,𝑤 = 1. (4.7b)

Here, (4.7b) is due to the fact that the summation of all steady state probabilities
should equal one.

Remark 4.3 It is worth noting that our model is distinct from the celebrated
Bianchi’s model [18] in the following two ways:

• STAs backoff after every collision in the Bianchi’s model, while STAs only
backoff when the consecutive collision counter exceeds the retry limit in
our proposed analytical model;

• The contention window size increases with the number of consecutive
collisions in the Bianchi’s model, while the contention window size is fixed
in our model.

These distinctions are due to the different behaviours of two MAC protocols.

4.4.2 Performance Analysis

We first analyze the successful beamforming training probability in Section 4.4.2.1,
based on which we analyze the beamforming training latency in Section 4.4.2.2
and the protocol throughput in Section 4.4.2.3. Particularly, we further analyze the
maximum throughput via an asymptotic analysis method in Section 4.4.2.4.
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4.4.2.1 Successful Beamforming Training Probability Analysis

To obtain the successful beamforming training probability, we first derive the closed-
from expression of the steady state probability and then obtain the successful beam-
forming training probability.

The steady state probability is first derived via the following theorem.

Theorem 4.1 The steady state probabilities in the proposed Markov chain based
model can be given by

𝜋𝑟 ,𝑤 =


𝑝𝑟 (1 − 𝑝)

𝑝𝑅 (𝑊 − 1) /2 + 1
,∀𝑟 ∈ [0, 𝑅 − 1], 𝑤 = 0

(𝑊 − 𝑤) 𝑝𝑅

𝑊
(
𝑝𝑅 (𝑊 − 1) /2 + 1

) ,∀𝑟 = 𝑅, 𝑤 ∈ [0,𝑊 − 1] .
(4.8)

Proof Based on the proposed analytical model, the steady state probabilities can be
solved via the following three steps:

• Firstly, given the one-step transition probability in (4.1), we know that 𝜋𝑟+1,0 =

𝑝 · 𝜋𝑟 ,0,∀𝑟 ∈ [0, 𝑅 − 2]. Therefore, the steady state probability at state (𝑅 − 1, 0)
can be represented by

𝜋𝑅−1,0 = 𝑝𝑅−1𝜋0,0. (4.9)

• Secondly, given the one-step transition probability in the backoff states (4.3)-(4.5),
the steady probability of backoff states can be given by

𝜋𝑅,𝑤 =
(𝑊 − 𝑤) 𝑝

𝑊

(
𝜋𝑅,0 + 𝜋𝑅−1,0

)
,∀𝑤 ∈ [0,𝑊 − 1] . (4.10)

• Thirdly, it can be obtained that 𝜋𝑅,0 =
𝑝

1−𝑝 𝜋𝑅−1,0 by taking 𝑤 = 0 in (4.10).
Hence, based on (4.9), (4.10) can be rewritten as

𝜋𝑅,𝑤 =
(𝑊 − 𝑤) 𝑝
𝑊 (1 − 𝑝) 𝜋𝑅−1,0

=
(𝑊 − 𝑤) 𝑝𝑅
𝑊 (1 − 𝑝) 𝜋0,0,∀𝑤 ∈ [0,𝑊 − 1] .

(4.11)

Hence, Theorem 4.1 is proved. �

In Theorem 4.1, all steady state probabilities are represented in terms of 𝑝. Here,
𝑝 is the unknown conditional collision probability. In the following, the value of 𝑝
is obtained via the following steps.

• Firstly, taking all the active states into consideration, the probability that an STA
stays in an active state is given by
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𝜏 =

𝑅∑︁
𝑟=0

𝜋𝑟 ,0

=
1

𝑝𝑅 (𝑊 − 1) /2 + 1
.

(4.12)

• Secondly, for an STA, a successful transmission event occurs, only when the other
active STAs select other A-BFT slots for transmission. Therefore, given an STA
is active, the conditional successful transmission probability is represented by

𝑝𝑠 =

(
𝜏

(
1 − 1

𝑀

)
+ 1 − 𝜏

)𝑁−1

=

(
1 − 𝜏

𝑀

)𝑁−1

=

(
1 − 1

𝑀
(
𝑝𝑅 (𝑊 − 1) /2 + 1

) )𝑁−1
.

(4.13)

• The last step is due to the substitution of (4.12). Since 𝑝𝑠 + 𝑝 = 1, the following
equation can be obtained:(

1 − 1
𝑀

(
𝑝𝑅 (𝑊 − 1) /2 + 1

) )𝑁−1
+ 𝑝 − 1 = 0. (4.14)

The value of 𝑝 can be obtained by solving (4.14).
We can see that (4.14) is an implicit function due to the summation and permuta-

tion. Thus, it is challenging to obtain a closed-form solution. To address this issue,
we apply a numerical method to obtain 𝑝. More importantly, (4.14) shows that 𝑝
depends on many protocol parameters, including retry limit 𝑅, contention window
𝑊 , the number of A-BFT slots 𝑀 , and the number of STAs 𝑁 . Moreover, these
protocol parameters are closely coupled with each other. Hence, the analysis on the
network throughput is challenging.

With the obtained 𝑝, the successful transmission probability can be computed.
Note that 1− 𝑝 is the conditional successful transmission probability given the STA
is active. So the successful transmission probability is represented by

𝑝𝑠 = (1 − 𝑝) 𝜏. (4.15)

The above value also denotes the probability of successful beamforming training in
BFT-MAC.

4.4.2.2 Average Beamforming Training Latency Analysis

In addition to the average successful beamforming training probability, the beam-
forming training latency is also another important performance metric for an MAC
protocol, especially for delay-sensitive applications. The average beamforming train-
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ing latency is defined as the average time taken until a successful transmission event
occurs.

The average beamforming training latency needs to take the consecutive collisions
before a successful transmission into account, which can be represented by

𝐷 =

∞∑︁
𝑖=0
P (Success|Collisions = 𝑖) E [𝐷𝑖]

=

∞∑︁
𝑖=0
(1 − 𝑝) 𝑝𝑖E [𝐷𝑖] .

(4.16)

Here, E[𝐷𝑖] represents the beamforming training latency of a successful transmis-
sion event after experiencing 𝑖 consecutive collisions. It is worth noting that the STA
would be frozen from transmission for a backoff time when the number of consecu-
tive collisions exceeds the retry limit. As such, based on the number of consecutive
collisions, E[𝐷𝑖] can be represented by the following two cases:

• Case I: When 𝑖 < 𝑅, E [𝐷𝑖] can be represented by

E [𝐷𝑖] = 𝑖 · 𝑇𝐵𝐼 + 𝐹 · 𝑇𝑆𝑆𝑊
= 𝑇𝐵𝐼 (𝑖 + 𝛼)

(4.17)

where 𝛼 = 𝐹 · 𝑇𝑆𝑆𝑊 /𝑇𝐵𝐼 . Here, 𝑇𝐵𝐼 and 𝑇𝑆𝑆𝑊 denote the duration of a BI and an
SSW frame, respectively. The above equation consists of the following terms: (1)
The first term in (4.17) represents the latency caused by 𝑖 consecutive collisions
before a successful transmission event occurs. According to BFT-MAC, when a
collision occurs, the collided STA must wait until the subsequent BI to initiate
a transmission attempt. As such, the latency is increased by a BI; and (2) The
second term in (4.17) denotes the latency taken for the successful transmission.
As illustrated in Fig. 4.2, the successful beamforming training procedure consists
of 𝐹 SSW frames.2 The corresponding beamforming training latency is 𝐹 ·𝑇𝑆𝑆𝑊 .
With (4.17), when the number of consecutive collisions is less than 𝑅, the average
beamforming training latency of an STA is represented by

𝑅−1∑︁
𝑖=0
(1 − 𝑝) 𝑝𝑖E [𝐷𝑖] =

𝑅−1∑︁
𝑖=0
(1 − 𝑝) 𝑝𝑖 (𝑖 + 𝛼) 𝑇𝐵𝐼

= 𝑇𝐵𝐼 (1 − 𝑝)
(
𝑅−1∑︁
𝑖=0

𝑝𝑖 · 𝑖 + 𝛼
𝑅−1∑︁
𝑖=0

𝑝𝑖

)
= 𝑇𝐵𝐼

(
𝑝𝑅+1 (𝑅 − 1) − 𝑅𝑝𝑅 + 𝑝

1 − 𝑝 +
(
1 − 𝑝𝑅

)
𝛼

)
.

(4.18)

• Case II: When 𝑖 ≥ 𝑅, each collision results in a further random backoff time of 𝑤
BIs. In this case, E [𝐷𝑖] is represented by

2 Here, 𝐹 is referred to as FSS field in 802.11ad.
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E [𝐷𝑖] = ((𝑖 − 𝑅 + 1) (E [𝑤] + 1) + 𝑅 − 1)𝑇𝐵𝐼 + 𝐹 · 𝑇𝑆𝑆𝑊
= 𝑇𝐵𝐼 ((𝑖 − 𝑅 + 1) (E [𝑤] + 1) + 𝑅 − 1 + 𝛼) .

(4.19)

Here, E [𝑤] denotes the average backoff time. When the number of a consecutive
collision exceeds 𝑅, the beamforming training latency can be represented by

∞∑︁
𝑖=𝑅

(1 − 𝑝) 𝑝𝑖E [𝐷𝑖]

=

∞∑︁
𝑖=𝑅

𝑇𝐵𝐼 (1 − 𝑝) 𝑝𝑖 ((𝑖 − 𝑅 + 1) (E [𝑤] + 1) + 𝑅 − 1 + 𝛼)

(𝑎)
=

∞∑︁
𝑗=0
𝑇𝐵𝐼 (1 − 𝑝) 𝑝𝑅+ 𝑗 (( 𝑗 + 1) (E [𝑤] + 1) + 𝑅 − 1 + 𝛼)

= 𝑇𝐵𝐼 (1 − 𝑝) 𝑝𝑅
©«(E [𝑤] + 1)

∞∑︁
𝑗=0

𝑝 𝑗 · 𝑗

+ ((E [𝑤] + 1) + 𝑅 − 1 + 𝛼)
∞∑︁
𝑗=0

𝑝 𝑗
ª®¬

= 𝑇𝐵𝐼 · 𝑝𝑅
(
𝑝(E [𝑤] + 1)

1 − 𝑝 + E [𝑤] + 𝑅 + 𝛼
)

(𝑏)
= 𝑇𝐵𝐼 · 𝑝𝑅

(
𝑊 + 1

2(1 − 𝑝) + 𝑅 + 𝛼 − 1
)
.

(4.20)

The derivations in the above equation are due to the following fact: (𝑎) follows by
changing variable 𝑗 = 𝑖−𝑅; and (𝑏) is due to the substitution ofE [𝑤] = (𝑊−1)/2.

Overall, taking these two cases into consideration, the average beamforming
training latency in (4.16) can be obtained as follows:

𝐷 =

𝑅−1∑︁
𝑖=0
(1 − 𝑝) 𝑝𝑖E [𝐷𝑖] +

∞∑︁
𝑖=𝑅

(1 − 𝑝) 𝑝𝑖E [𝐷𝑖]

= 𝑇𝐵𝐼

(
𝑝𝑅+1 (𝑅 − 1) − 𝑅𝑝𝑅 + 𝑝

1 − 𝑝 +
(
1 − 𝑝𝑅

)
𝛼

)
+ 𝑇𝐵𝐼 𝑝𝑅

(
𝑊 + 1

2(1 − 𝑝) + 𝑅 + 𝛼 − 1
)

= 𝑇𝐵𝐼

(
𝑝𝑅 (𝑊 − 1)/2 + 𝑝

1 − 𝑝 + 𝑎
)
.

(4.21)

The above equation shows that collision probability 𝑝, retry limit 𝑅, and the con-
tention window𝑊 impact the beamforming training latency. Obviously, we can see
that latency increases with the collision probability. This is because severe collisions
would result in substantial retransmission in the network and increase the latency.
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4.4.2.3 Normalized Throughput Analysis

In the following, we analyze the throughput of BFT-MAC. Based on the previous
analysis, the average successful transmission probability is 𝑝𝑠𝜏, and hence the aver-
age number of STAs that successfully perform beamforming training is represented
by 𝑝𝑠𝜏𝑁 . The normalized throughput of BFT-MAC is defined as the percentage of
A-BFT slots that has been successfully utilized.

The throughput reflects the beamforming training capability of the MAC protocol,
which is given by

𝑆 =
𝑝𝑠𝜏𝑁

𝑀

=

(
1 − 𝜏

𝑀

)𝑁−1 𝜏𝑁

𝑀

(4.22)

where the last step follows from the substitution of (4.13). Note that 𝜏 depends
on protocol parameters. Hence, the above equation characterizes the impact of the
number of STAs, the number of A-BFT slots, and MAC parameters on the MAC
throughput.

From a simple analysis on (4.22), we can see that obtaining the asymptotic
MAC throughput in dense user scenarios is computational complex. The reason
is that (4.22) is a complicate function of 𝜏, 𝑁 , and 𝑀 . To address the issue, an
approximation of throughput is desired to acquire tractable performance analysis.
With results in (4.13), when the number of STAs is large, the conditional successful
transmission probability can be approximated by

𝑝𝑠 =

(
1 − 𝜏

𝑀

)𝑁−1

(𝑎)
≈

(
1 − 𝜏

𝑀

)𝑁
=

((
1 − 𝜏

𝑀

)𝑀/𝜏)𝑁 𝜏/𝑀
(𝑏)
≈ 𝑒−𝑁 𝜏/𝑀 .

(4.23)

In the above equation, (𝑎) is obtained when 𝑁 is sufficiently large. In this chapter,
we consider dense user scenarios, and the condition can be easily satisfied. Hence,
the approximation is reasonable. Here, (𝑏) follows from the equation

lim
𝑛→∞

(
1 − 1

𝑛

)𝑛
=

1
𝑒

where 𝑛 = 𝑀/𝜏 is sufficiently large in dense user scenarios. From (4.23), we can
find that the average successful transmission probability is dependent on 𝑁/𝑀 .

Substituting (4.23) into (4.22), when the number of STAs is sufficiently large, the
asymptotic normalized throughput can be represented by



4.4 Performance Analysis and Enhancement for BFT-MAC 91

𝑆 =
𝜏𝑁

𝑀
𝑒−𝜏𝑁 /𝑀 . (4.24)

The above equation characterizes the asymptotic throughput performance with
respect to system parameters. In addition, the simulation results in Fig. 4.8 have
validated the accuracy of this approximation.

Remark 4.4 Based on the above analysis, we show the following important
insights for MAC design in dense user scenarios:

• Firstly, the ratio between the number of STAs and the number of A-BFT
slots, i.e., 𝑁/𝑀 , impacts the normalized throughput in dense user scenarios.
As such, it is an effective solution to increase the number of A-BFT slots
adaptive to the number of STAs, thereby maintaining excellent performance;

• Secondly, given a further analysis of (4.24), when 𝜏𝑁/𝑀 is less than 1, the
throughput increases with 𝜏𝑁/𝑀 . When 𝜏𝑁/𝑀 exceeds 1, the throughput
decreases with 𝜏𝑁/𝑀 . In practical systems with a fixed number of A-BFT
slots, we find that the throughput would decrease with the increase of user
density in dense user scenarios;

• Thirdly, as the MAC parameters determine 𝜏, the MAC parameters also
affected the throughput. Thus, we claim that the default MAC parameter
setting may become suboptimal when user density changes over time. The
statement implies that the MAC parameters should be tuned according to
the user density.

4.4.2.4 Maximum Normalized Throughput Analysis

Given the aforementioned asymptotic normalized throughput analysis, we aim to
analyze the maximum normalized throughput in dense user scenarios. The number
of A-BFT slots can be optimized with respect to the number of STAs to maximize the
normalized throughput, since the number of STAs in the network is uncontrollable.
For simplicity, the number of A-BFT slots is assumed to be sufficient. The case with
limited number of of A-BFT slots is discussed in Section 4.4.2.5.

In this case, we formulate the normalized throughput maximization problem as
follows:

P2 :max
𝑀

𝑆

s.t. 𝑀 ∈ Z+.
(4.25)

Note that the number of A-BFT slots should take positive integers as indicated by
the constraint. Obviously, problem (4.25) is an integer programming problem. To
address the above problem, the integer constraint is first relaxed to a non-integer
constraint, and then this optimization problem can be solved by taking the derivation
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of (4.24). The optimal value of A-BFT slots for achieving the maximum normalized
throughput is denoted by

𝑀★ = 𝜏𝑁. (4.26)

The above equation (4.26) provides an interesting insight on the MAC design. For
maximizing the normalized throughput, the number of A-BFT slots should equal
the number of active STAs (𝜏𝑁) in the network. In other words, the network need to
provide equivalent A-BFT slots for all active users.

Given the optimal condition in (4.26), the maximum normalized throughput is
represented by

𝑆★ = 𝑒−1 (4.27)

The value of the throughput is the same as that of slotted ALOHA.
The optimal number of A-BFT slots is dependent on the MAC parameters since

𝜏 is related to the MAC parameters. Once the condition in (4.26) is satisfied, we can
have 𝑝 = 1 − 1/𝑒 because of (4.23). Then, based on (4.12), (4.26) can be rewritten
as

𝑀★ =
𝑁(

1 − 𝑒−1)𝑅 (𝑊 − 1) /2 + 1
. (4.28)

The above equation characterizes the relationship between MAC parameters 𝑅 and
𝑊 and the optimal number of A-BFT slots. By analyzing (4.28), we find that the
optimal number of A-BFT slots decreases with the decrease of 𝑅 and the increase of
𝑊 . Hence, a small value of 𝑅 and a large value of𝑊 should be chosen to achieve the
maximum throughput for a limited number of A-BFT slots. In the following Section
4.4.2.5, the optimization of MAC parameters is given.

Remark 4.5 The above asymptotic throughput analysis illustrates several useful
insights onto the performance of BFT-MAC:

• Firstly, the maximum normalized throughput achieved by BFT-MAC is
barely 1/𝑒. The value is the same as that of slotted ALOHA. The low nor-
malized throughput is due to the absence of carrier sensing mechanism. The
lack of carrier sensing mechanism leads to severe collisions in beamforming
training;

• Secondly, the optimal number of A-BFT slots for achieving the maximum
throughput should equal the number of active STAs in the network. In other
words, the mismatch between the active STAs and A-BFT slots results in
the throughput degradation;

• Finally, analytical results indicate that the protocol parameters 𝑅 and 𝑊
also impact the normalized throughput.
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4.4.2.5 Enhancement Scheme for 802.11ad BFT-MAC

In the following, to improve MAC performance in dense user scenarios, we propose
an enhancement scheme. The previous analysis results indicate that the ratio be-
tween the number of STAs and the number of A-BFT slots impacts the normalized
throughput. However, in practical mmWave WLANs, the number of A-BFT slots is
limited. For instance, in the current 802.11ad standard, at most eight A-BFT slots
are provided for beamforming training. In the future 802.11ay standard, the number
of A-BFT slots is expected to increase up to 40 [30]. The number of A-BFT slots is
still limited, as compared to the time-varying number of STAs. In this way, due to
the limitation of A-BFT slots, the throughput degradation can be observed in dense
user scenarios.

In this chapter, we propose an enhancement scheme to improve the throughput
in dense user networks. In the enhancement scheme, that MAC parameters 𝑅 and
𝑊 should be tuned with the user density in the network. The reason is that tuning
MAC parameters can determine the probability that STAs stay active (𝜏). As such,
the number of active STAs could be guaranteed to be equivalent to the number of
the provided A-BFT slots. Our analytical results also validate the reason. As shown
in (4.12), we have

𝜏 =
1

(𝑝𝑅 (𝑊 − 1) /2 + 1) .

Here, with the decrease of 𝑅, the value of 𝜏 decreases. The fact means that a small
value of the retry limit results in that STAs are prone to enter backoff states, such that
reducing the number of active STAs in the network. In addition, with the decrease
of 𝑊 , the value of 𝜏 also decreases. This is because a large value of the contention
window size renders STAs enter inactive states for a long time. Therefore, it is an
effective solution to adaptively adjust MAC parameters in tune with user density to
provide satisfactory performance in dense user scenarios.

The operation of the proposed enhancement scheme consists of the following two
steps:

• Firstly, the AP collects the information the number of STAs in the network. The
information can be easily obtained in commercial WLANs;

• Secondly, according to the collected information on the number of STAs in the
network, the AP determines the optimal BFT-MAC parameter configuration based
on the optimization algorithm, and then broadcasts the optimal MAC parameter
configuration, including the retry limit and the contention window, to all the STAs
in the network.

The key issue in the proposed enhancement scheme is the optimal MAC parameter
configuration. The issue is formulated as the following optimization problem with
the objective of maximizing the normalized throughput:
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P3 :max
𝑅,𝑊

𝑆

s.t. 1 ≤ 𝑊 ≤ 𝑊𝑚𝑎𝑥 ,𝑊 ∈ Z+ (4.29a)
1 ≤ 𝑅 ≤ 𝑅𝑚𝑎𝑥 , 𝑅 ∈ Z+. (4.29b)

Here,𝑊𝑚𝑎𝑥 represents the maximum contention window size. This value is adopted
to avoid infinite backoff time which may result in significant beamforming training
latency. Here, 𝑅𝑚𝑎𝑥 represents the maximum value of the retry limit.

The above optimization problem is challenging to be solved due to the follow-
ing two reasons:

• Firstly, the optimization variables need to follow the integer constraints,
and hence the problem is an integer optimization problem;

• Secondly, the objective function is non-convex. The reason is that 𝑆 is an
implicit function in terms of two coupled variables 𝑅 and𝑊 . According to
(4.14), it can be clearly seen that variables 𝑅 and𝑊 are coupled with each
other.

Overall, the above problem is an integer non-convex optimization problem, and
obtaining the optimal solution is difficult via traditional optimization methods.

We solve the problem by leveraging an inherent property of the problem. We
find that the number of possible combinations of the MAC parameters is limited. As
such, an exhaustive search method can be applied to solve this problem [19]. The
computational complexity of the exhaustive search method can be easily analyzed,
i.e., O(𝑊𝑚𝑎𝑥𝑅𝑚𝑎𝑥). Moreover, the optimal parameter setting can be computed with
different numbers of STAs in an offline manner, and the computed parameter setting
is loaded into AP as a table. As such, the computational time can be further reduced.
In the online operation, according to the number of STAs collected by the AP, the
AP could search the table to determine the optimal MAC parameter setting with a
low complexity.

4.5 Performance Evaluation for 802.11ad BFT-MAC

In this section, we evaluate the proposed analytical model and the enhancement
scheme via extensive Monte-Carlo simulations. We first provide the simulation
setup in Section 4.5.1, and then validate the effectiveness of the proposed analytical
model under different parameter setting in terms of different performance metrics
in Section 4.5.2. Finally, we demonstrate the performance gain of the proposed
enhancement scheme in dense network scenarios in Section 4.5.3.
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Table 4.2: Simulation parameters in the BFT-MAC protocol.

Parameter Value
BI duration (𝑇𝐵𝐼 ) 100 ms
SSW frame duration (𝑇𝑆𝑆𝑊 ) 15.8 us
Number of STAs (𝑁 ) [8,32]
Number of A-BFT slots (𝑀 ) 8
Default retry limit (𝑅) 8
Default contention window (𝑊 ) 8
Number of SSW frames in an A-BFT slot (𝐹 ) 16
Frequency band 60 GHz
Maximum retry limit (𝑅𝑚𝑎𝑥) 10
Maximum contention window (𝑊𝑚𝑎𝑥) 10

4.5.1 Simulation Setup

The proposed analytical model is validated via a discrete event simulator coded in
Matlab. An 802.11ad system which operates at the unlicensed 60 GHz frequency
band is considered in the simulation. Specifically, 10,000 BIs are simulated, and
the observed statistics of interests are studied. Unless otherwise specified, based on
the default parameter configuration of the 802.11ad standard [32], we set 𝑀 = 8,
𝑊 = 8 and 𝑅 = 8. Important simulation parameters are given in Table 4.2. In
each experiment, 1,000 simulation runs are conducted, and a 95 percent confidence
interval for each simulation point is plotted.

4.5.2 Validation of Analytical Model

As shown in Fig. 4.4, we show the successful beamforming training probability with
respect to the number of STAs when 𝑀 = 8, 12, and16. It is obvious that the results
obtained via our analytical model are highly consistent with that via simulations,
thereby validating the accuracy of our analytical model. As expected, it can be seen
that a lower successful beamforming training probability is observed in denser user
scenarios. This is because more STAs contend for limited A-BFT slots. Specifically,
when the number of STAs increases from 4 to 32, it can be clearly see that the
successful beamforming training probability drops from more than 80% to less
than 20%. Moreover, as the number of A-BFT slots, 𝑀 , increases, the successful
beamforming training probability increases since more A-BFT slots are provided
to beamforming training. The above results validate our theoretical result that the
successful beamforming training probability mainly depends on the numbers of
STAs and A-BFT slots.

As shown in Fig. 4.5, the normalized throughput performance with respect to the
number of STAs is presented. A few important observations can be made. Firstly,
simulation results are closely matched with analytical results, which further validates
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Fig. 4.4: Successful beamforming training probability with respect to the number of
STAs.
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Fig. 4.5: Normalized throughput with respect to the number of STAs.

our analytical model. Secondly, the normalized throughput exhibits a bell-shape
behaviour, which is due to the following two reasons: (1) Many A-BFT slots are not
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Fig. 4.6: Average beamforming training latency with respect to different numbers of
STAs.
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Fig. 4.7: Normalized throughput with different values of the retry limit.

utilized in low user density scenarios; and (2) Severe collision occurs in high user
density scenarios, which leads to a low throughput. Therefore, in order to achieve
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Fig. 4.8: Normalized throughput with respect to different ratios between the number
of STAs and the number of A-BFT slots.

the maximum normalized throughput, we should cautiously select the number of
A-BFT slots. Thirdly, we can see that a system with more A-BFT slots achieves a
higher normalized throughput than that with fewer A-BFT slots. For instance, in a
dense user scenario, i.e., 𝑁 = 32, the normalized throughput for 𝑀 = 16 is about
25%, which is more than that for 𝑀 = 8. The reason is that more A-BFT slots
can effectively alleviate the collision issue in dense user scenarios. Finally, we can
observe the maximum normalize throughput is around 1/𝑒 (i.e., about 0.37), which
also complies with our analytical results.

As shown in Fig. 4.6, the impact of the number of STAs on the average beamform-
ing training latency is evaluated. It can be observed that simulation results comply
with our analytical results in (4.21). It is clear that the beamforming training latency
increases with the number of STAs. The reason is that STAs suffer from severe
collisions in dense user scenarios, resulting in a large amount of retransmission.
Furthermore, as the number of A-BFT slots increases, the average beamforming
training latency decreases. When 𝑁 is 32, the average beamforming training latency
for 𝑀 = 8 is up to 1.3 seconds, which is 150% more than that for 𝑀 = 16. Therefore,
increasing the number of A-BFT slots can reduce the beamforming training latency.

As shown in Fig. 4.7, we plot the impact of the value of the retry limit on the
normalized throughput. We first observe that the normalized throughput of BFT-
MAC varies with different values of retry limit. Specifically, BFT-MAC with a small
value of the retry limit achieves a higher throughput than that with a larger value
of retry limit in dense user scenarios. For instance, when the number of users is
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Fig. 4.9: Normalized throughput comparison for 𝑀 = 8.

32, BFT-MAC for 𝑅 = 2 achieves around 28% throughput gain as compared to
that for 𝑅 = 8. This is because a small value of the retry limit leads to STAs are
susceptible to enter the backoff states. In this way, fewer active STAs contend for
the A-BFT slots, and hence enhancing the performance in dense user scenarios.
As 𝑅 = 8 is the default configuration of the retry limit, we know that the default
MAC configuration is suboptimal in dense user scenarios. Hence, to improve MAC
performance, adaptively adjusting MAC parameters in tune with the user density is
a potential solution.

As shown in Fig. 4.8, we study the normalized throughput in terms of the ratio
between the number of STAs and the number of A-BFT slots. We can see that the
normalized throughput with the same ratio for different numbers of A-BFTs and
STAs are quite close. The simulation results validate our asymptotic analysis results,
i.e., the MAC throughput mainly depends on the ratio between contending STAs
and the provided A-BFT slots. In addition, with the increase of 𝑀 , the gap between
simulation results and our approximation in (4.24) narrows. The gap is negligible
in dense user scenarios, i.e., when the ratio is larger than 2, which indicates the
accuracy of our approximation.

4.5.3 Enhancement Scheme Evaluation

In this subsection, performance of the proposed enhancement scheme is evaluated,
by comparing with two benchmarks:
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Fig. 4.10: Normalized throughput comparison for 𝑀 = 12.
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Fig. 4.11: Average beamforming training latency comparison for M=8.

• Default 802.11ad BFT-MAC protocol, in which both 𝑅 and 𝑊 adopt default
parameter configurations;
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Fig. 4.12: Average beamforming training latency comparison for M=12.

• Slotted ALOHA protocol, in which each STA randomly selects an A-BFT slot
for beamforming training without a backoff mechanism.

As shown in Fig. 4.9 and Fig. 4.10, we compare the normalized throughput of the
proposed enhancement scheme with the benchmarks. Several important observations
can be obtained from simulation results:

• Firstly, the proposed enhancement scheme can significantly enhance the normal-
ized throughput in dense user scenarios, compared with the benchmarks. The
simulation results are presented in Fig. 4.9. Specifically, a 35% performance gain
can be achieved when the number of users is 32. The observation demonstrates
the effectiveness of the proposed enhancement scheme. The underlying reason is
that the MAC parameters in the proposed scheme can be adjusted in tune with
user density to achieve the best performance;

• Secondly, nearly the same performance is achieved by all three schemes in low
user density scenarios. The key difference between three schemes is the back-
off mechanism, which mainly works in dense user scenarios and impacts the
performance there;

• Thirdly, as the number of A-BFT slots increases, the performance gain decreases.
As shown in Fig. 4.10, when the number of A-BFT slots is 12, the proposed
enhancement scheme only achieves 17% performance gain, as compared to the
default 802.11ad. Therefore, it is more suitable to apply the proposed enhancement
scheme in dense user scenarios.
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Fig. 4.13: The optimal value of the retry limit in terms of the number of STAs.

Next, the average beamforming training latency comparison between the proposed
scheme and benchmarks for 𝑀 = 8, and12 is shown in Fig. 4.11 and Fig. 4.12,
respectively. We can see that the average beamforming training latency of all three
schemes increases with the number of STAs, since the collision probability increases.
In addition, the slotted ALOHA protocol suffers from severe latency as compared
to benchmarks. The slotted ALOHA lacks a backoff mechanism, and hence all
STAs always stay active, which results in a higher collision probability and a longer
delay. Compared with the default 802.11ad, the proposed scheme can achieve a
considerable latency reduction. Specifically, for the number of STAs is 32, a 28%
performance gain can be observed clearly in Fig. 4.11. Similar to the normalized
throughput, with the growth of the number of A-BFT slots, the performance gain
on beamforming training latency reduces as the increase of A-BFT slots relieves the
collision. As plotted in Fig. 4.12, for 𝑀 = 12, the proposed scheme can still obtain a
16% latency reduction when the number of STAs is 32. The result further validates
the effectiveness of the proposed scheme. Even though the beamforming training
latency can be reduced via adjusting MAC parameters, hundreds of milliseconds
latency is still incurred in dense user scenarios.

Figure 4.13 plots the optimal values of the retry limit in terms of the number of
STAs when 𝑀 = 8, 12, and16. Clearly, the optimal value of the retry limit decreases
with the number of STAs. The results show that a small value of retry limit is
preferred in dense user scenarios. For instance, for the number of A-BFT slots is
8, the optimal value of the retry limit decreases to 1, when the number of STAs is
larger than 28. This is because a small value of the retry limit in dense user scenarios
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leads to that STAs are prone to enter backoff states. As such, the collision probability
is reduced, thereby enhancing the normalized throughput. Moreover, the network
becomes less congested with the increase of A-BFT slots. Hence, we should chose
a large value of the retry limit. For example, when the number of STAs is 32, the
optimal retry limit value is 3 for the number of A-BFT slots is 16. The value is larger
than that for the number of A-BFT slots is 8.

4.6 Multiuser Beamforming Training Protocol Design and
Analysis

The previous sections belong to the first part of this chapter, which focuses on
analyzing and enhancing beamforming training performance in the current 802.11ad
standard, i.e., the single-user transmission scenario. The following two sections are
the second part of the chapter, which focuses on beamforming training protocol
design and performance analysis in the multiuser transmission scenario.

With large communication bandwidth, mmWave communication can achieve a
transmission data rate up to multiple gigabits per second, which facilitates mmWave
WiFi systems to support data-hungry applications, such as wireless docking, high
definition video transmission, and real-time virtual reality gaming. Multiuser trans-
mission is a technology to transmit data to multiple STAs simultaneously. By exploit-
ing the multiuser multiplexing gain, the aggregated data rate increases approximate
linearly with the number of users that perform multiuser transmission.

The support of multiuser transmission is an important feature for high-speed
wireless networks. For microwave WLANs, the current standard, i.e., 802.11ac, can
support up to four users. Such multiuser transmission feature is expected to be inher-
ited in the next generation WLAN standard, i.e., 802.11ax. For mmWave WLANs,
however, current 802.11ad can only support single-user transmission. Towards future
mmWave WLANs, the next generation standard, i.e., IEEE 802.11ay, consider mul-
tiuser transmission as the key technology to improve throughput. Current 802.11ad
achieves a peak data rate approximately 7 Gbps, while 802.11ay is going to witness
a sky-rocketing throughput increase. The peak data rate in 802.11ay is expected to
up to 40 Gbps [30, 31, 34].

In mmWave communication, a large antenna array is utilized to obtain sufficient
directional antenna gain to conquer extremely high path loss. However, the large
antenna array poses new challenges to support multiuser transmission via conven-
tional digital beamforming methods. The conventional digital beamforming methods
require real-time channel state information between the transmitter and the receiver.
Operating such methods in mmWave systems would incur high overhead in channel
estimation and excessive power consumption with fully digital precoding since the
channel state information is huge for a large antenna array with a number of antenna
elements. Thus, an efficient multiuser beamforming scheme is desired for mmWave
communication.
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In the following, we propose a multiuser beamforming training protocol and
analyze its performance in Section 4.6, and then simulation results are provided to
validate the performance of the proposed protocol in Section 4.7. Specifically, in
this section, we first give a review on the existing multiuser transmission schemes
in Section 4.6.1. Then, we design a multiuser transmission scheme for downlink
mmWave communication in Section 4.6.2. Then, we propose a tailored multiuser
beamforming training protocol to support multiuser transmission in Section 4.6.3
and analyze the overhead of the proposed protocol in Section 4.6.4.

4.6.1 Existing Works on Multiuser Transmission

Existing works propose multiple schemes to enable multiuser transmission in
mmWave communication. Among them, hybrid beamforming is considered as a
promising solution with a low complexity [14,35,36]. Hybrid beamforming consists
of two parts, i.e., analog beamforming and digital beamforming. The analog beam-
forming part controls the phase of the transmitted signal via analog phase shifters
to provide high antenna gain for addressing path loss issues. The digital beamform-
ing part designs the baseband beamforming matrix to mitigate multiuser inference
among users. Existing theoretical analysis and empirical experiment results have
shown that hybrid beamforming can achieve close-to-optimal performance as com-
pared to fully digital beamforming benchmark with a much lower complexity [15].
For more details on hybrid beamforming, one can refer to a detailed introduction in
Section 2.2.3 in Chapter 2 in this monograph.

Many works have been devoted to designing and analyzing hybrid beamforming
in different mmWave settings. Alkhateeb et al. in [37] proposed a hybrid precoding
in wideband mmWave communication systems with a feedback between transmit-
ter and receiver. The sparsity of received signal is exploited to design an efficient
hybrid precoding scheme in [38]. This method is extended work to mmWave cellu-
lar networks [39]. In addition to traditional cellular networks, hybrid beamforming
schemes are also developed for high-mobility communications scenarios. A novel
hybrid beamforming scheme is developed for the high-speed railway communica-
tion [40]. The proposed scheme leverages a number of train-mounted mobile relay
to enable multiuser transmissions, thereby providing high-speed downlink com-
munication services for the train. In another direction, the user selection issue is
investigated. In the hybrid beamforming, multiple users should be selected to offer
multiuser transmission simultaneously. A low complexity quasi-orthogonal user se-
lection among a number of users based on their beam index information is proposed
in [41, 42], and the corresponding performance analysis is provided therein.
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Fig. 4.14: Considered scenario for multiuser transmission, in which several STAs
transmit data to the AP simultaneously.

4.6.2 Multiuser Transmission Scheme

In the following, we first show hybrid beamforming architecture in Section 4.6.2.1,
and then present the corresponding hybrid beamforming algorithm in Section 4.6.2.2.

4.6.2.1 Hybrid Beamforming Architecture

As shown in Fig. 4.14, we consider a downlink multiuser transmission scenario. To
this end, we adopt the following hybrid beamforming architecture [16], as shown
in Fig. 4.15. In addition to the analog beamforming at both the transmitter and
the receiver, AP has digital beamforming whose function is to mitigate multiuser
interference among users. Let 𝑁𝑠 , 𝑁𝑅𝐹 , 𝑁𝐵𝑆 , and 𝑁𝑀𝑆 denote the number of
transmitted data streams, the number of radio frequency (RF) chains, the number
of antennas at the AP, and the number of antennas at each user, respectively. For
simplicity of analysis, users are assumed to be equipped with the same number of
antennas. Let𝑈 denote the number of simultaneously supported users. For𝑈 users,
we need to have𝑈 RF chains at the AP to support𝑈 data streams from the AP to the
users. Hence, we have 𝑁𝑠 = 𝑁𝑅𝐹 = 𝑈 [16].

Digital beamforming at the AP can be represented by the following matrix, i.e.,
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Fig. 4.15: Hybrid beamforming architecture between the AP and multiple users.

F𝐵𝐵 = [f𝐵𝐵1 , f𝐵𝐵2 , ..., f𝐵𝐵𝑈 ] ∈ C𝑈×𝑈 ,

where each element represent the digital beamforming vector for a user. The analog
beamforming at the AP is represented by the following matrix

F𝑅𝐹 = [f𝑅𝐹1 , f𝑅𝐹2 , ..., f𝑅𝐹𝑈 ] ∈ C𝑁𝐵𝑆×𝑈 .

As such, the transmitted signal after analog beamforming and digital beamforming
at the AP is given by

x = F𝑅𝐹F𝐵𝐵s, (4.30)

where s = [𝑠1, 𝑠2, ..., 𝑠𝑈 ]𝑇 ∈ C𝑈×1 is the transmitted symbols for different users. The
transmission power at the AP is given by E[|𝑠𝑖 |2] = 𝑃/𝑈. Note that in this section,
A𝐻 and A𝑇 stand for conjugate transpose and transpose of matrix A, respectively.
a∗ represents the conjugate of vector a.

The channel matrix between the AP and user 𝑖 is represented by matrix H𝑖 ∈
C𝑁𝑀𝑆×𝑁𝐵𝑆 . Here, we consider a line of sight (LOS) path scenario, in which there is
only one path between the AP and the user. In this way, the corresponding channel
matrix H𝑖 is given by [14]

H𝑖 =
√︁
𝑁𝑀𝑆𝑁𝐵𝑆𝑎𝛼𝑖 (\)𝛼∗𝐵𝑆 (𝜙), (4.31)

where 𝑎 represents the complex channel gain of the path. Here, 𝛼𝑖 (\) and 𝛼𝐵𝑆 (𝜙)
are the antenna array response vectors of user 𝑖 and the AP, respectively. Considering
uniform antenna arrays, they can be represented by
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𝛼𝑖 (\) =
1

√
𝑁𝑀𝑆

[1, 𝑒 𝑗 2𝜋
_
𝑟 sin(\) , ..., 𝑒 𝑗 (𝑁𝑀𝑆−1) 2𝜋

_
𝑟 sin(\) ]𝑇 , (4.32)

and
𝛼𝐵𝑆 (𝜙) =

1
√
𝑁𝐵𝑆
[1, 𝑒 𝑗 2𝜋

_
𝑟 sin(𝜙) , ..., 𝑒 𝑗 (𝑁𝐵𝑆−1) 2𝜋

_
𝑟 sin(𝜙) ]𝑇 , (4.33)

respectively. Here, _ is the signal wavelength, and 𝑟 is the distance between antenna
elements.

Let matrix W = [w1,w2, ...,w𝑈 ] represent the RF combining matrix at users,
i.e., analog beamforming at users. At the 𝑢th user, the RF combiner w𝑢 ∈ C𝑁𝑀𝑆×1

is used to process the received signal, and thus the received signal is given by

𝑦𝑢 = w∗𝑢H𝑢

𝑈∑︁
𝑛=1

F𝑅𝐹 f𝐵𝐵𝑛 𝑠𝑛 + w∗𝑛n𝑢 , (4.34)

where n𝑢 is the complex Gaussian noise with variance 𝑁𝑜.
With the above results, the sum rate for multiple users can be given by

𝑅𝑠𝑢𝑚 =

𝑈∑︁
𝑢=1

log2

(
1 +

𝑃
𝑈
|w∗𝑢H𝑢F𝑅𝐹 f𝐵𝐵𝑢 |2

𝑃
𝑈

∑
𝑛≠𝑢 |w∗𝑢H𝑢F𝑅𝐹 f𝐵𝐵𝑛 |2) + 𝑁𝑜

)
. (4.35)

In the downlink multiuser transmission scenario, the goal is to design digital
beamforming, i.e., F𝐵𝐵, and analog beamforming i.e., F𝑅𝐹 and W, with the objective
of maximizing the sum rate. Thus, we can formulate the following optimization
problem:

P4 : max
F𝑅𝐹 ,F𝐵𝐵 ,W

𝑅𝑠𝑢𝑚 (4.36a)

In the above problem, analog beamforming F𝑅𝐹 and W should be implemented with
beamsteering codebooks in practical mmWave systems [43], while digital beamform-
ing F𝐵𝐵 can be fully digitalized. As such, this problem is a non-convex optimization
problem, such that the closed form of the optimal solution is difficult to obtain.

4.6.2.2 Proposed Hybrid Beamforming Algorithm

In the following, a low-complexity hybrid beamforming algorithm is proposed to
solve the problem. The proposed algorithm consists of two stages: an analog beam-
forming stage and a digital beamforming stage, which are detailed as follows.

• Analog beamforming stage: Each user and the AP select their analog beamform-
ing, i.e., f𝑅𝐹𝑢 and w𝑢 , to maximize directional antenna gain for their connection.
As such, the optimal analog beamforming can be obtained via
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f𝑅𝐹𝑢 ,w𝑢

}
= arg max | |w∗𝑢H𝑢f𝑅𝐹𝑢 | |.

In this stage, each user and the AP conduct operation based on the beamforming
training protocol in 802.11ad.

• Digital beamforming stage: At the beginning of the second stage, each user and its
corresponding RF chain select the optimal analog beamforming to transmit data.
Next, each user estimates its effective channel, i.e., h̄𝑖 = w∗

𝑖
H𝑖F𝑅𝐹 , then feeds

the effective channel back to the AP. Based on the effective channel, the AP can
calculate the digital beamforming based on a zero-forcing precoding algorithm.
In this way, the optimal digital beamforming is given by

F𝐵𝐵 = H̄∗
(
H̄H̄∗

)−1
, (4.37)

where
H̄ = [h̄𝑇1 , h̄

𝑇
2 , ..., h̄

𝑇
𝑈 ]𝑇 . (4.38)

In this stage, each user feeds back the effective channel to the AP, and then the
AP calculates digital beamforming based on the effective channel.

4.6.3 Multiuser Beamforming Training Protocol

In the following, we propose a multiuser hybrid beamforming protocol that is com-
patible with the 802.11ad standard. The proposed protocol consists of three stages,
i.e., multiuser sector level sweep (SLS), multiuser ATI and multiuser beam refine-
ment protocol (BRP) stages. As discussed above, the designed hybrid beamforming
algorithm includes an analog beamforming stage and a digital beamforming stage.
For the analog beamforming stage, multiuser SLS and multiuser BRP stages are per-
formed for STAs and their corresponding RF chains, which is to obtain the analog
beamforming. For the digital beamforming stage, the effective channel is estimated
and fed back to the AP during the multiuser BRP stage to acquire the digital beam-
forming.

The detailed operations in three stages is given as follows:

• Multiuser SLS stage: As shown in Fig. 4.16, SLS for each STA is performed
individually at each A-BFT slot for interference avoidance consideration. Multiple
frames, such as SSW, sector sweep feedback, and sector sweep ACK frames, are
exchanged between the AP and STAs. The maximum number of the A-BFT slots
is eight in 802.11ad;

• Multiuser ATI stage: The stage is to announce channel access allocation. As
shown in Fig. 4.17, 𝑁 STAs in the coverage of the AP are polled. Then, each
STA responds the AP with a service period request (SPR) frame which contains
information whether the STA requires to transmit data. Next, the AP grants 𝑈
users to data transmission. In other words, 𝑁 STAs are polled, and only 𝑈 STAs
are selected to transmit data simultaneously;
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Fig. 4.17: An illustrative example of the multiuser ATI stage.

• Multiuser BRP stage: In this stage, as suggested in 802.11ad, each user needs to
perform BRP with the AP to obtain the refined analog beamforming. As shown
in Fig. 4.18, to avoid interference, BRP for different users are performed at
different time slots. In addition, each user can estimate the channel when each
user communicates to the AP via BRP frames. Then, at the end of multiuser BRP
stage, each user can feed back the effective channel to the AP via BRP feedback
frames. Based on the collected effective channel, digital beamforming can be
solved according to (4.37).
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4.6.4 Protocol Overhead Analysis

In mmWave communication, beamforming training incurs the non-negligible over-
head for data transmission. Hence, we analyze the overhead of the proposed multiuser
beamforming training protocol in terms of beamforming training time, as detailed
in Section 4.6.4.2. For comparison, we first analyze the protocol overhead in the
802.11ad standard in Section 4.6.4.1.

4.6.4.1 Beamforming Training Time Analysis of 802.11ad Protocol

Aforementioned, in 802.11ad, the beamforming training process for one user consists
of three parts: SLS, ATI, and BRP. The corresponding analysis is given as follows.
Note that all the frames used in beamforming training are control frames. The control
frames are transmitted with the control data rate, i.e., 27.5 Mbps, as suggested by
802.11ad.

• SLS phase for one user: The SLS phase between the AP and one user consists
of TXSS, RXSS, SSW feedback, and SSW ACK frames, as shown in Fig. 2.9 in
Chapter 2 in the monograph. Let 𝑁𝑡 and 𝑁𝑟 denote the number of sectors of the
AP and each user, respectively. The TXSS and RXSS frames contain 𝑁𝑡 and 𝑁𝑟
SSW frames, respectively. With simple addition, the total consumed time in the
SLS phase is given by

𝑇𝑆𝐿𝑆 = 𝑁𝑡𝑇𝑆𝑆𝑊 + 𝑁𝑟𝑇𝑆𝑆𝑊 + 𝑇𝑆𝑆𝑊− 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 + 𝑇𝑆𝑆𝑊−𝐴𝐶𝐾 , (4.39)
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where 𝑇𝑆𝑆𝑊 , 𝑇𝑆𝑆𝑊− 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 , and 𝑇𝑆𝑆𝑊−𝐴𝐶𝐾 represent the time consumption
for transmitting an SSW frame, an SSW feedback frame, and an SSW ACK frame,
respectively.

• ATI phase for one user: As shown in Fig. 4.17, the ATI phase for one user consists
of polling, SPR and Grant frames. In 802.11ad, only one user can be served at
each time slot in the ATI phase. Thus, we have one polling frame, one SPR frame,
and one Grant frame. The total consumed time in the ATI phase is given by

𝑇𝐴𝑇 𝐼 = 𝑇𝑝𝑜𝑙𝑙𝑖𝑛𝑔 + 𝑇𝑆𝑃𝑅 + 𝑇𝐺𝑟𝑎𝑛𝑡 , (4.40)

where 𝑇𝑝𝑜𝑙𝑙𝑖𝑛𝑔, 𝑇𝑆𝑃𝑅, and 𝑇𝐺𝑟𝑎𝑛𝑡 denote the consumed time for transmitting a
polling frame, an SPR frame, and a Grant frame, respectively.

• BRP phase for one user: As shown in Fig. 2.10 in Chapter 2, the BRP phase con-
sists of four subphases, i.e., BRP setup, multiple sector ID (MID), beam combining
(BC), and BRP transaction subphases. The MID and BC subphases are iterative
BRP training. There are three kinds of BRP frames, i.e., BRP, BRP feedback, and
BRP with TRN-T/R frames. The BRP feedback frame is the BRP frame appended
with channel measurement information. The BRP with a TRN-R/T frame is the
BRP frame appended with the TRN-R/T field to perform channel measurement.
In 802.11ad, as shown in Fig. 2.10, the components of each subphase are detailed
as follows:

– The BRP setup subphase includes 5 BRP frames;
– The MID subphase includes 2 BRP with TRN-R/T frames and 2 BRP feedback

frames;
– The BC subphase includes 2𝑁𝑏𝑒𝑎𝑚 BRP with TRN-R/T frames and 2 BRP

feedback frames;
– The BRP transaction subphase includes one BRP frame and 5 BRP with

TRN-R/T field frames.

With simple calculation of four subphases, the total time in BRP is given by

𝑇𝐵𝑅𝑃 = 𝑇𝐵𝑅𝑃−𝑠𝑒𝑡𝑢𝑝 + 𝑁𝐵𝑅𝑃 (𝑇𝑀𝐼𝐷 + 𝑇𝐵𝐶 ) + 𝑇𝐵𝑅𝑃−𝑡𝑟𝑎𝑛, (4.41)

where 𝑁𝐵𝑅𝑃 represents the number of iterations in the BRP phase.

Overall, the total beamforming training time in 802.11ad for multiple users can
be calculated by the summation of SLS, ATI and BRP phases, which is given by

𝑇 𝑠𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑁 (𝑇𝑆𝐿𝑆 + 𝑇𝐴𝑇 𝐼 + 𝑇𝐵𝑅𝑃) . (4.42)

where 𝑁 is the number of the supported users.
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Fig. 4.19: An illustrative simulated topology in which the AP provides communica-
tion services for multiple STAs.

4.6.4.2 Beamforming Training Time Analysis of Proposed Protocol

As detailed in the proposed multiuser beamforming training protocol, the protocol
consists of multiuser SLS, multiuser ATI and multiuser BRP phases. The detailed
analysis of the corresponding phases is given as follows.

• Multiuser SLS phase: As shown in Fig. 4.16, we use multiple RXSS, SSW
feedback, and SSW ACK frames to support 𝑁 STAs in the coverage of the AP.
The total consumed time in the multiuser SLS phase is given by

𝑇𝑚𝑆𝐿𝑆 = 𝑁𝑡𝑇𝑆𝑆𝑊 + 𝑁 (𝑁𝑟𝑇𝑆𝑆𝑊 + 𝑇𝑆𝑆𝑊− 𝑓 𝑒𝑒𝑑 + 𝑇𝑆𝑆𝑊−𝐴𝐶𝐾 ). (4.43)

• Multiuser ATI phase: As shown in Fig. 4.17, we consider 𝑁 STAs in the coverage
of AP. As such, 𝑁 STAs are polled by the AP, and only 𝑈 users are granted with
the service periods (SPs). The selected 𝑈 users transmit data simultaneously in
the SPs. The total consumed time in the multiuser ATI phase is

𝑇𝑚𝐴𝑇 𝐼 = 𝑁
(
𝑇𝑝𝑜𝑙𝑙𝑖𝑛𝑔 + 𝑇𝑆𝑃𝑅

)
+ 𝑇𝐺𝑟𝑎𝑛𝑡𝑈. (4.44)

• Multiuser BRP phase: For the multiuser BRP phase, BRP is performed for each
user at each slot, and hence the total consumed time is given by
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Table 4.3: Simulation Parameters.

Parameter Value
SSW frame size 26 bytes
SSW feedback frame size 28 bytes
SSW ACK frame size 28 bytes
Polling frame size 22 bytes
SPR frame size 27 bytes
Grant frame size 27 bytes
BRP frame size 986 bytes
BRP feedback frame size 1008 bytes
BRP with TRN-R/T frame size 2830 bytes
Control link rate 27.5 Mbps
Beacon interval duration 1, 000 ms
Background noise spectrum density −134 dBm/MHz
Bandwidth 2.16 GHz
Central carrier frequency 60 GHz
Number of antennas at AP 16
Number of antennas at user 8
𝑁𝑡 16
𝑁𝑟 8
𝑁𝐵𝑅𝑃 4
𝑁𝑏𝑒𝑎𝑚 4
𝑁 8
𝑈 4
R 5 meters

𝑇𝑚𝐵𝑅𝑃 = 𝑇𝐵𝑅𝑃𝑈. (4.45)

Above equation illustrates that time consumption of the multiuser BRP phase
increases linearly with the number of the supported users. As BRP occupies most
of the beamforming training time, it implies that consumed time of the multiuser
beamforming training protocol increases nearly linearly with the number of the
supported users.

Overall, the total overhead of beamforming training in our proposed multiuser
beamforming training protocol is given by

𝑇𝑚𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇𝑚𝑆𝐿𝑆 + 𝑇
𝑚
𝐴𝑇 𝐼 + 𝑇

𝑚
𝐵𝑅𝑃 . (4.46)

Theoretical analysis results are presented via simulations to evaluate the perfor-
mance of the proposed protocol, as detailed in Section 4.7.
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Fig. 4.20: Time consumption of beamforming training in 802.11ad standard in terms
of different numbers of users.

4.7 Protocol Performance Evaluation

In the following, we first present the simulation setup in Section 4.7.1, and then
illustrate the performance of the proposed multiuser beamforming training protocol
in terms of the number of users and AP’s transmit power in Section 4.7.2.

4.7.1 Simulation Setup

We consider an indoor scenario, in which the AP has a coverage area within a
radius of 𝑅 = 5 meters. The simulated topology is illustrated in Fig. 4.19, in which
multiple STAs are uniformly distributed in AP’s coverage. Among multiple STAs,
a few users are randomly selected to perform hybrid beamforming for simultaneous
data transmission. For the path loss model, we adopt a line of sight (LOS) link channel
model. Specifically, the path loss (PL) between the AP and an STA is represented by

𝑃𝐿 (𝑑𝐵) = 𝐴 + 20 log10 𝑓 + 10𝛾 log10 𝑑, (4.47)

where 𝐴 = 32.5, 𝑑 is the distance between AP and the STA, 𝑓 is the central carrier
frequency (in GHz), and 𝛾 = 2 [44]. The duration of a BI is set to 1,000 ms in
the simulation, as suggested by 802.11ad. The AP is equipped with 16 transmitter
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Fig. 4.21: Effective sum rate comparison of the proposed hybrid beamforming pro-
tocol with different number of users.

sectors, and each STA is equipped with 8 receiver sectors. The other important
simulation parameters are listed in Table ??.

4.7.2 Simulation Results

As shown in Fig. 4.20, we show the overhead performance of the 802.11ad beam-
forming training protocol with respect to different numbers of users. Theoretical
overhead analysis for the 802.11ad beamforming training protocol that supports
single user transmission is given in (4.42). The theoretical overhead analysis of
the proposed hybrid beamforming protocol is given in (4.46). We can see that the
protocol overhead increases linearly with the number of users. The reason is that
multiuser BRP stage is implemented at different time slots for different users. For
a hybrid beamforming case with eight users, the beamforming training overhead
is about 400 ms, which is expected to occupy about 40% of the entire duration of
an BI in 802.11ad. Simulation results indicate that the current hybrid beamforming
protocol in 802.11ad is inefficient to support a large number of users.

Taking the overhead of beamforming training into consideration, we aim to com-
pare the effective data rate performance in the following. Firstly, we define the
effective rate as

𝑅𝑒 =
(𝑇 − 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑)𝑅𝑠𝑢𝑚

𝑇
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Fig. 4.22: Effective rate comparison of the proposed hybrid beamforming protocol
with different numbers of users and transmitting powers.

where 𝑅𝑒 is the effective rate, 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 is the time consumption of beamform-
ing training overhead, and 𝑅𝑠𝑢𝑚 is the raw transmission rate calculated by (4.35).
Secondly, as shown in Fig. 4.21, the effective date rate performance of hybrid beam-
forming with respect to different transmitting powers is compared. Simulation results
demonstrate that the proposed hybrid beamforming protocol can achieve a signifi-
cant data rate gain compared with the single user transmission in 802.11ad standard.
This is because that hybrid beamforming can exploit multiuser multiplexing gain
to enhance throughput and support multiuser transmission. However, as the number
of users that performs hybrid beamforming increases, the overhead of beamforming
training increases significantly. In the figure, the AP’s transmission power is set
to 0.001 mW, and a five-user hybrid beamforming scheme outperforms the others.
However, the result does not hold in other cases. As such, it is very important to
identify the optimal number of users to perform hybrid beamforming with different
AP’s transmitting powers, thereby enhancing system performance.

As shown in Fig. 4.22, we compare the effective rates of the proposed hybrid
beamforming protocols with different numbers of users when transmitting powers
are set to 0.001 mW, 0.1 mW, and 10 mW, respectively. Simulation results show the
optimal number of users varies in terms of transmit powers. Specifically, when the
transmitting power is low, such as 0.001 mW, we can see that the optimal number
of users to perform hybrid beamforming is 5. Then, when the transmitting power is
0.1 mW, the optimal number of users changes to 6. Next, with a higher transmitting
power, such as 10 mW, the optimal number of users is 7. The results demonstrate that
the optimal number of users increases with the AP’s transmitting power strength.
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4.8 Summary

In this chapter, we focus on the beamforming training protocol design and perfor-
mance analysis in both single-user transmission and multiuser transmission scenar-
ios. For the single-user transmission scenario, we have introduced the BFT-MAC
performance analysis and enhancement in the current 802.11ad. An accurate ana-
lytical model has been introduced to analyze the performance of BFT-MAC, and
the asymptotic analysis has demonstrated that the maximum normalized throughput
is barely 1/𝑒. We have introduced an enhancement scheme to enhance the perfor-
mance in dense user scenarios. For the multiuser transmission scenario, we have
introduced a multiuser beamforming training protocol. Furthermore, we have ana-
lyzed the overhead of our protocol and found that overhead increases nearly linearly
with the number of the simultaneously supported users.
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Chapter 5
Beamforming-Aided Cooperative Edge Caching
in mmWave Dense Networks

Abstract Edge caching is a promising solution of reducing the content retrieval
delay and relieving the backhaul traffic burden in ultra-dense networks. It achieves
this objective by proactively caching popular contents on edge nodes, e.g., small base
stations (SBSs). Yet, the amount of cache resources on each SBS is limited. In this
chapter, we present a novel caching policy, named device-to-device (D2D) assisted
cooperative edge caching (DCEC), for mmWave dense networks. In specific, a user
can retrieve the requested content from neighboring users via D2D links, or from
the neighboring SBSs via cellular links to efficiently exploit the cache diversity. In
contrast to existing caching policies for networks in lower frequency bands, which
require complex interference management techniques, we take advantage of the
directional mmWave antenna to ensure high transmission rate. We derive closed-
form expressions of the backhaul offloading performance and content retrieval delay
based on stochastic information of network topology. Analytical results indicate
that, with the increase of network density, the content retrieval delay via D2D
links increases significantly while that via cellular links only increases slightly.
Comprehensive simulations validate our theoretical analysis and demonstrate that
the presented policy can effectively decrease backhaul traffic burden and reduce the
content retrieval delay.

5.1 Introduction

The surging data-intensive mobile applications, e.g., virtual reality, mobile aug-
mented reality, and high-definition immersive video streaming, are constantly chal-
lenging the capacity of wireless networks, driving the network evolution to the next
generation [1–3]. To properly provision the ever-increasing demands of mobile data
traffic, mmWave communication, which is a de-facto candidate technology for the
fifth generation (5G) networks, is envisaged to provide a pseudo-wire wireless con-
nection service by exploiting a large swath of spectrum resource [4]. Leveraging
high-gain directional antennas, current mmWave networks offer an extremely high
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data rate of nearly 7 Gbps, which is expected to increase to 40 Gbps in the forth-
coming future [5]. As mmWave networks can be further densified due to the hostile
propagation characteristics, deploying unconstrained wired backhaul links in dense
networks becomes infeasible due to high costs, which results in backhaul conges-
tion. Alleviating backhaul pressure is imperative for mmWave dense networks in the
future.

Edge caching, which harnesses the feature of repetitive content requests of mobile
applications, can effectively relieve the backhaul pressure [6–8]. Specifically, popular
contents that are being frequently requested can be cached on the edge nodes (e.g.,
small base station (SBS) [9]) during off-peak hours to serve neighbouring users
during peak hours. In this way, the backhaul traffic is expected to be reduced by up
to 35% [10,11]. Meanwhile, edge caching also helps to reduce content deliver delay
as the content is retrieved from the edge instead of remote servers. However, due to
the limited capacity of each edge node, it is rather difficult to boost the performance
of edge caching. To achieve a higher edge caching gain, an intuitive solution is to
employ caching resources on different edge nodes in a cooperative manner, i.e.,
cooperative caching. Cooperative caching can be divided into two categories: a)
cooperative edge caching where contents are cached in the SBS cluster consisting of
multiple SBSs in proximity, and b) device-to-device (D2D) caching where contents
are cached in nearby users. In the former, each SBS in the cluster caches a diverse set
of contents to serve users with an increased caching diversity, while in the latter case,
each user and its neighboring user cache contents and exchange cached contents via
high-rate D2D communications.

Implementing cooperative caching in mmWave dense networks can help to sub-
stantially reduce the backhaul burden and suppress the content retrieval delay. Mean-
while, it also brings extra opportunity in tackling the interference issue. Specifically,
in a wireless system operating in lower frequency bands, the performance of cooper-
ative caching is limited by multi-user interference, as omni-directional antennas are
used for data transmission. In contrast, mmWave systems employ directional anten-
nas, which naturally avoid interference from neighbouring users. Yet, cooperative
caching in mmWave networks also confronts new challenges. Firstly, there exists no
well-established analytical model for mmWave networks, clarifying the relationship
between network density and content caching in case directional antennas are used.
As a consequence, it is oftentimes difficult to achieve a closed-form expression that
gives intuitive insights for system design.

In this chapter, to address the aforementioned challenges, we devise a new co-
operative caching policy for mmWave cellular networks. This policy exploits the
cooperative caching resources from users and SBSs in their proximity. The content
caching decisions are thus made by accounting for the content retrieval delay. In-
tuitively, the most popular contents can be cached in the users and its D2D peers,
in order to minimize the content retrieval delay, while less popular contents can be
cached in the SBS cluster. In light of such caching policy, we analyze the back-
haul offloading gain by considering a directional mmWave antenna. Such antenna
is featured with varying main lobe antenna gain and non-zero side lobe gain, which
is the key challenge of interference analysis. By harnessing the stochastic network
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topology information, the average content retrieval delay of the introduced policy
is theoretically analyzed. The results of which reveal how the network density and
directional antennas affect the overall caching performance.

The remainder of this chapter is organized as follows. Section 5.2 reviews related
works, followed by the system model in Section 5.3. We present the DCEC design
and analyze the corresponding backhaul offloading gain in Section 5.4. Section
5.5 gives theoretical performance analysis on the content retrieval delay. Extensive
simulations are provided in Section 5.6. Finally, concluding remarks are given in
Section 5.7.

5.2 Related Works on Edge Caching

Equipped with both computing and storage capabilities, mobile edge computing
(MEC) [12] is capable of providing high quality of experience (QoE) to mobile
users. Recently, extensive efforts has been devoted to the computing functionality
of MEC [13–15]. In order to minimize the service latency, Rodrigues et al. devised
a hybrid method consisting of virtual machine migration and transmission power
control [13]. Based on this method, they proposed to reconfigure edge servers to
account for system scalability [14]. Zhou et al. considered to jointly optimize the
allocation of computing and caching resources in mobile edge networks, in order to
maximize the system utility [15].

The caching resources on the edge nodes provide another approach to enhance
user’s QoE [16, 17]. Generally, existing literature on edge caching can be classified
into two categories: D2D caching and cooperative edge caching. Both of them
have been extensively studied in case of microwave communications. For instance,
it is found that by leveraging both the user’s caching resources and the high-rate
D2D communications [18–20], D2D caching is able to effectively offload cellular
traffic, hence improve cellular data rate and reduce power consumption. Theoretic
scaling law also indicates that, if the D2D transmission range can be made adaptive
to the network density, the network throughput would increase with the number of
network nodes [21]. Wang et al. focused on a mobile scenario, where users frequently
interact with others in their proximity via D2D communications [22]. In [23], three
scheduling schemes in D2D communication based edge caching are proposed, each
of which improves the throughput of D2D links at low computational complexity.

Cooperative edge caching aims at exploiting the caching resources within the
SBS cluster to enhance the capability of local caching. Chen et al. devised a co-
operative caching policy by caching different portions of less popular contents at
different SBSs to increase content diversity. They then studied the tradeoff relation-
ship between transmission diversity and content diversity [24]. In order to maximize
the caching performance, both content placement and caching capacity have been
optimized. Zhang et al. investigated the delay-optimal caching problem by means of
content placement, a greedy algorithm is proposed to achieve the goal of cooperative
edge caching [25]. Another work addresses the caching size optimization problem
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considering the budget of cache deployment in heterogeneous networks [26]. Re-
cently, the authors of [27] proposed to apply in-memory storage and processing to
enhance the energy efficiency of edge caching. Zhao et al. developed a cooperative
caching policy according to the distribution of content popularity and user pref-
erence [28], leading to improved content hit ratio and reduced transmission delay.
Furthermore, observing the fact that content popularity are highly dependent on
user locations, Yang et al. presented a location-aware caching strategy by adaptive
learning of content popularity [29].

In summary, the aforementioned works focus on cooperative caching policies in
case of microwave communications, whereas the unique capability and feature of
mmWave communications in wireless networks are seldom considered. Particularly,
the mutual interference of mobile users with omni-directional antennas poses signif-
icant challenge for at microwave bands, especially in ultra-dense networks. Conse-
quently, complex interference cancellation and interference management techniques
are required for both D2D caching and cooperative edge caching [25, 30]. Fortu-
nately, such interference issue can be readily addressed using directional antennas
in mmWave communications. In light of D2D edge caching using mmWave com-
munications, Semiari et al. focused on the handover failures in in mobile mmWave
networks and proposed a proactive caching policy [31]. Ji et al. proposed to use
D2D caching in mmWave networks to improve network performance [32]. However,
analytical results are not provided to feature the performance of D2D caching. Giat-
soglou et al. proposed a D2D caching policy and leveraged the stochastic geometry
theory for performance analysis [33]. However, the cache resource on SBSs is not
included in the system. The impact of directional mmWave antennas are not char-
acterized either. The work of both [32] and [33] only apply D2D mmWave links
for backhaul traffic offloading, without considering the impact of network density.
To address those issues, this chapter focuses on cooperative edge caching, and takes
into account of the high data rate of mmWave communications to further improve
the caching performance.

5.3 System Model

In this section, we first present the network model and the content popularity model.
Then, we characterize the directional antenna and the mmWave channel, followed
by the data transmission model. Important notations are summarized in Table 5.1.

5.3.1 Network Model

Figure 5.1 gives an illustration of the topology of a cache-enabled edge network.
Without loss of generality, we assume the geographical distribution of SBSs and users
follows homogeneous Poisson point process (PPP) Φ𝐵𝑆 and Φ𝑈𝐸 , respectively, the
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Table 5.1: Important notations.

Notation Description
F Requested file library
Φ𝐵𝑆 PPP of SBS
_𝐵𝑆 Density of SBS
Φ𝑈𝐸 PPP of users
_𝑈𝐸 Density of users
𝑊 System bandwidth
𝜙 Fraction of bandwidth allocation
𝛼 Path loss exponent
𝐾 SBS cluster size
𝑟 Physical distance
𝑅 Transmission rate
𝜎2 Background noise power
𝐷 Average content retrieval delay
𝑆 Signal power
𝐼 Interference power
b Content popularity skewness
𝐺 Directional antenna gain
𝐹 Backhaul offloading gain
ℎ Content hit ratio
B𝑜 Associated SBS

density of which are _𝐵𝑆 and _𝑈𝐸 [33,34]. Each SBS operates on a shared spectrum
band and communicates to remote servers via a backhaul link with limited capacity.
Time division multiple access (TDMA) mode is adopted by each SBS to serve
mobile users in its coverage. Both SBSs and users use steerable directional antennas
for packet transmission. We assume beamforming training is perfectly performed
between users and associated SBSs before data transmission [35, 36].

We consider a user-centric architecture [25], each user can be served by at
most 𝐾 SBSs, which forms a SBS cluster represented by {SBS1, SBS2, ..., SBS𝐾 }.
For instance, Fig. 5.1 shows user 𝐴 is served by a SBS cluster of three SBSs,
{SBS1, SBS2, SBS3}. Users are divided into two types: unpaired users and paired
users. For unpaired users, they follow a homogeneous PPP Φ𝑢 with parameter _𝑢 .
Such users can be only served by SBSs (e.g., user 𝐶 in Fig. 5.1). By contrast, paired
users can not only served by SBS cluster, but also its D2D peer via high-rate D2D
communications. Let Φ𝑝 be the homogeneous PPP followed by paired users, with
a density of _𝑝 . User 𝐴 and 𝐵 form a D2D pair and are able to communicate with
each other via a D2D link. We assume the D2D peer of a paired user locates uni-
formly within a disk of radius 𝑟𝑚𝑎𝑥

𝑑
. Thus, the distance, 𝑟𝑑 , between the user and its

corresponding D2D peer is given by the following distribution [33]

𝑓 (𝑟𝑑) =
2𝑟𝑑(
𝑟𝑚𝑎𝑥
𝑑

)2 , 0 < 𝑟𝑑 < 𝑟
𝑚𝑎𝑥
𝑑 . (5.1)
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Fig. 5.1: Cache-enabled edge network topology.

Note that both D2D communications and cellular communications are simul-
taneously supported in the system, the overlay scheme is employed. That is, D2D
communications and cellular communications are using disjoint frequency bands to
avoid interference. Denote by 𝑊 the available bandwidth for the mmWave system,
while 𝜙𝑊 is the bandwidth allocated to D2D communications.

5.3.2 Content Popularity Model

Denote by F = { 𝑓1, 𝑓2, ..., 𝑓𝑖 , ... 𝑓 |F |} and Q = {𝑞1, 𝑞2, ..., 𝑞𝑖 , ..., 𝑞 |F |} the sets
of contents that can be requested and their corresponding popularity, respectively,
where |F | is the number of contents. We assume the popularity distribution follows
a Zipf distribution [25], and the popularity of the 𝑖-th popular content is given by

𝑞𝑖 =
𝑖−b∑ |F |
𝑗=1 𝑗

−b
, 1 ≤ 𝑖 ≤ |F | (5.2)
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where b ≥ 0 is the skewness of the content popularity distribution. The skewness
constant varies with content types, a larger value of skewness indicates that the
popularity distribution is more concentrated.

5.3.3 Directional Antenna Model

The ideal “flat-top” model has been widely adopted in the literature. This model is
featured with a constant gain in the main lobe and zero-gain elsewhere, which helps
to largely simplify the interference analysis [37]. In practice, however, the main-lobe
gain of directional antenna varies and the side-lobe gain is non-zero. In this chapter,
the practical antenna model is adopted, the gain of which is characterized according
to the relative angle, \, to its boresight, i.e.,

𝐺 (\) =
𝐺𝑚10−𝑐

(
2\
𝜔𝑚

)2

|\ | ≤ \𝑚
2

𝐺𝑠
\𝑚
2 < |\ | ≤ 𝜋.

(5.3)

𝐺𝑚 and 𝐺𝑠 are the maximum antenna gain of the main lobe and the average antenna
gain of the side lobe, respectively. 𝜔𝑚 and \𝑚 represent the beam width of the half-
power and main lobe, respectively. 𝑐 is a constant, the empirical value of which is
0.3 [2].

5.3.4 mmWave Channel Model

For the mmWave channel model, we consider the large-scale fading of mmWave
links, which is modeled as

𝑃𝐿 (𝑑𝐵) = 20 log10

(
4𝜋𝑑0
_

)
+ 10𝛼 log10

(
𝑟

𝑑0

)
, 𝑟 ≥ 𝑑0 (5.4)

where 𝑟 is the propagation distance and 𝛼 is the path loss exponent, _ represents the
wavelength and 𝑑0 is the free space reference distance [38,39]. This model can well
characterize the mmWave channel when the propagation distance is further than the
reference distance. For notation simplicity, the average path loss is rewritten as

𝛽 = 𝐶𝑟−𝛼 (5.5)

where 𝐶 = _2

𝑑3
0 (4𝜋)2

is a constant.
In this chapter, the fast Raleigh fading is utilized for characterizing the small scale

fading, i.e., ℎ ∼ exp(1), which means that the channel gain is an exponential random
variable with a unit mean.
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5.3.5 Transmission Model

The transmission throughput of a mmWave link can be obtained by

𝑅 =
𝑊

𝑁𝑐𝑒𝑙𝑙
log2

(
1 + 𝑆

𝐼 + 𝜎2

)
(5.6)

where 𝑁𝑐𝑒𝑙𝑙 is the cell load, 𝜎2 is the power of background noise given by the noise
power spectral density𝑁𝑜 and bandwidth𝑊 , i.e., 𝜎2 = 𝑊𝑁𝑜. 𝑆 and 𝐼 are the power
of signal and interference, respectively.

Each user receives interference from potentially all the SBSs except its associated
SBS,B𝑜. With the model of both the directional antenna and the channel, the received
interference power is given by

𝐼 =
∑︁

𝑖∈Φ𝐵𝑆\B𝑜

𝐼𝑖

=
∑︁

𝑖∈Φ𝐵𝑆\B𝑜

𝑃𝐵𝐺 (\𝑡 ,𝑖)𝐺 (\𝑟 ,𝑖)ℎ𝑖𝐶𝑟−𝛼𝑖
(5.7)

where 𝐺 (\𝑡 ,𝑖) and 𝐺 (\𝑟 ,𝑖) are the gain of transmitting and receiving directional
antenna, respectively. \𝑡 ,𝑖 and \𝑟 ,𝑖 are the angle of departure (AOD) and the angle of
arrival (AOA) of the interference signal between the user and the 𝑖th interfered SBS,
respectively. 𝑟𝑖 is the physical distance between the interfered user and the 𝑖th SBS.
For analytical simplicity, the AOAs and AODs of interference links are assumed to
be uniformly distributed in (0, 2𝜋] [40], which gives an approach to estimate the
average directional antenna gain of the interference signal, i.e.,

�̄� =

∫ 2𝜋

0
𝐺 (\) 𝑓 (\)𝑑\

=

∫ \𝑚
2

0
𝐺𝑚10−𝑐

(
2\
𝜔𝑚

)2 1
𝜋
𝑑\ +

∫ 𝜋

\
2

𝐺𝑠
1
𝜋
𝑑\

=
𝜔𝑚𝐺𝑚√
2𝑐𝜋 ln 10

erfc

(
\𝑚
√
𝑐 ln 10
𝜔𝑚

)
− 𝐺𝑠\𝑚

2𝜋
+ 𝐺𝑠

(5.8)

where erfc(𝑥) is the Gauss error function equals
∫ 𝑥
0 𝑒−𝑡

2
𝑑𝑡. Then, the average inter-

ference power in (5.7) can be rewritten as

E[𝐼] =
∑︁

𝑖∈Φ𝐵𝑆\B𝑜

𝑃𝐵�̄�
2𝐶E[ℎ𝑖]E[𝑟−𝛼𝑖 ] (5.9)

which is used in the following analysis of this chapter.
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5.4 D2D-Assisted Cooperative Edge Caching (DCEC) Policy

In this section, the DCEC policy is firstly proposed with the aim of exploiting caching
diversity, and then the backhaul offloading performance is theoretically analyzed.

5.4.1 Scheme Design

The key idea of the DCEC policy is to utilize the pooling cache resource from mobile
users, their D2D peers, and the SBS cluster, to store popular contents, which helps
to reduce the backhaul traffic. Note that it is the user who requests its D2D peer
and the SBS cluster to obtain the caching information of interested contents. For
a requested content, if it is cached at the user end, it can be retrieved by the user
at negligible latency. If the content is cached in its D2D peer, it can be retrieved
by the users via D2D communications. Last, if the content is cached in a certain
SBS, the user can connect to the SBS and request the content via cellular links, at
the cost of a higher delay than that via D2D communications. This is because D2D
communications operate at mmWave band and, meanwhile, the D2D peers locate at
a shorter distance than the SBS, which help to provide much higher data rates. In
contrast, if the content is not cached locally, the user connects to the nearest SBS
𝐵𝑜, and then the remote servers to retrieve the contents, which incurs a large and
unpredictable delay. In this way, for each mobile user, the place for content retrieval
is prioritized based on the delay in an ascending order, i.e., {user end ≤ its D2D
peer ≤ SBS cluster ≤ remoter servers}. Such priority sequence is referred during
the content placement of the proposed DCEC policy to minimize content retrieval
delay.

Firstly, in order to provide content retrieve services at minimum delay, the most
popular contents are cached on both the user end and its D2D peer. Without loss
of generality, we assume each user is equipped with the same storage capacity, 𝐶𝑢 .
Recall that, there are paired users and unpaired users. For the former, a set of the
2𝐶𝑢 most popular contents, i.e., { 𝑓1, 𝑓2, ..., 𝑓2𝐶𝑢

}, are cached in the D2D pair of
users. For the sake of fairness, these 2𝐶𝑢 contents are evenly distributed in the user
and its D2D peer such that the contents at both paired users have the same request
probability. In this way, the content hit ratio of one of the paired user is

ℎ𝑝 =
1
2

2𝐶𝑢∑︁
𝑖=1

𝑞𝑖 . (5.10)

For unpaired users, each of them can only cache a set of the most popular𝐶𝑢 contents,
i.e., { 𝑓1, 𝑓2, ..., 𝑓𝐶𝑢

}. The content hit ratio at an unpaired user is

ℎ𝑢 =

𝐶𝑢∑︁
𝑖=1

𝑞𝑖 . (5.11)
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Secondly, considering the long retrieval delay via cellular communications, those
less popular contents are cached in the SBS cluster. Similarly, we assume each
SBS has equal cache capacity, 𝐶𝑠 . Each user is served by a cluster consisting of
𝐾 SBS. Hence, the SBS cluster caches the set of 𝐾𝐶𝑠 less popular contents, i.e.,
{ 𝑓2𝐶𝑢+1, 𝑓2𝐶𝑢+2, ..., 𝑓2𝐶𝑢+𝐾𝐶𝑠

}. For the sake of fairness and load balancing, these
𝐾𝐶𝑠 contents are evenly distributed in each SBS of the cluster. Formally, the content
hit ratio at each SBS is given by

ℎ𝑠 =
1
𝐾

2𝐶𝑢+𝐾𝐶𝑠∑︁
𝑖=2𝐶𝑢+1

𝑞𝑖 . (5.12)

Note that it is possible for some fair popular contents being miss cached for the
unpaired users. Yet, in the case of dense networks, the portion of unpaired users is
negligible, as users can connect to proximal users with a high probability. In our
subsequent simulations, the ratio of paired and unpaired users are set to be 80% and
20%, respectively.

5.4.2 Backhaul Offloading Analysis

Thanks to the proposed DCEC policy, instead of retrieving contents via capacity-
constrained backhaul links, users can obtain their requested contents within edge
networks, which significantly reduces the backhaul burden. Before theoretically
characterizing the performance gain of the DCEC policy, we first define the backhaul
offloading gain as the amount of data traffic that is not served by backhaul links to
the total data traffic ratio.

For any two paired users, the total storage of both users and the SBS cluster can
be utilized to store the most popular 2𝐶𝑢 + 𝐾𝐶𝑠 contents. As a result, the backhaul
offloading gain is 2ℎ𝑝+𝐾ℎ𝑠 . For those unpaired users, without the mutual cooperation
of D2D peers, the resulting backhaul offloading gain is ℎ𝑢 + 𝐾ℎ𝑠 . Collectively, the
DCEC policy enjoys an average backhaul offloading gain of

𝐹 = ℎ𝑢 (1 − 𝛿) + 2ℎ𝑝𝛿 + 𝐾ℎ𝑠 (5.13)

where 𝛿 = _𝑝

_𝑝+_𝑢 is the portion of paired users of all the users. Clearly, the value of
gain increases with the cluster size 𝐾 , as a larger cluster size brings higher potential
of caching diversity gain.

We can also obtain the corresponding content miss probability, which is the
chance that the requested content is not locally cached, as

𝑃𝑚 = 1 − 𝐹. (5.14)
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According to our content priority, those contents are less popular and can be obtained
from remote servers by connecting to the nearest cellular link and then the constraint
backhaul link.

5.5 Content Retrieval Delay Analysis

In this section, we analyze the average content retrieval delay of the proposed
DCEC policy. Since users may retrieve the interested content through different
links, the average content retrieval delay is thus analyzed in accordance with those
communication links. In case the requested content is not cached, this request is
delivered to remote servers via a cellular link and a backhaul link. Note that the
backhaul link is capacity-constrained, with an average transmission rate of E[𝑅𝐵].
Denote by E[𝑅𝑁 ] the average transmission rate between the user the its nearest SBS.
If the requested content happens to be cached in either the SBS cluster or its D2D
peer, the user can retrieve the content at an average transmission rate, E[𝑅𝐶 ], from
the SBS cluster or at an average transmission rate, E[𝑅𝐷], from its D2D peer. Denote
by a the average content size, we can obtain the average content retrieval delay of
the proposed DCEC policy as

𝐷 =
𝑃𝑚a

E[𝑅𝐵]
+ 𝑃𝑚a

E[𝑅𝑁 ]
+ 𝑃𝑠a

E[𝑅𝐶 ]
+ 𝑃𝑑a

E[𝑅𝐷]
(5.15)

where 𝑃𝑠 = 𝐾ℎ𝑠 and 𝑃𝑑 = 𝛿ℎ𝑝 represent the probabilities that the requested content
is cached in the SBS cluster and the D2D peer, respectively. In what follows, the
transmission rate in different cases is theoretically lower bounded respectively, based
on which an upper bound of the average content retrieval delay can be provided.

5.5.1 Backhaul Transmission Rate Analysis

Recall that the geographical distribution of both users and the SBSs follows the PPP.
According to the property of the PPP, the amount of traffic generated from each
network area also follows PPP. For those users served by constraint backhaul links,
they are modeled as a homogeneous PPP, Φ𝐵, with parameter 𝑃𝑚_𝑈𝐸 . Each SBS
is assumed to be with equal backhaul capacity, 𝐵, serving its associated users in a
TDMA manner. The following lemma gives the average backhaul transmission rate.

Lemma 5.1 For each user, the average backhaul transmission rate is given by

E[𝑅𝐵] =
𝐵_𝐵𝑆

𝑃𝑚_𝑈𝐸

(
1 + 𝑃𝑚_𝑈𝐸

^_𝐵𝑆

) ^+1(
1 + 𝑃𝑚_𝑈𝐸

^_𝐵𝑆

) ^+1
− 1

(5.16)
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where ^ is a constant equals 3.5.

Proof Since the backhaul capacity is evenly allocated to each user, the resulting
average backhaul rate of each user is 𝐵/E[𝑁𝐵], where 𝑁𝐵 is a random variable
depending on the SBS cell area and characterizes the backhaul load. Without loss
of generality, we assume the SBS cell area, 𝑎, follows a Gamma distribution with
parameter ^ [41], the probability distribution function (PDF) is given by

𝑓 (𝑎) = 𝑎^−1𝑒−^_𝐵𝑆𝑎
(^_𝐵𝑆)^

Γ (^) . (5.17)

Then, the average backhaul load can be given by

E[𝑁𝐵] =
∫ ∞

𝑎

∞∑︁
𝑛=1

𝑛Pr{𝑁𝐵 = 𝑛|𝑎} 𝑓 (𝑎)𝑑𝑎

(𝑎)
=

∫ ∞

𝑎

∞∑︁
𝑛=1

𝑛
(𝑃𝑚_𝑈𝐸𝑎)𝑛

𝑛!
𝑒−𝑃𝑚_𝑈𝐸𝑎 𝑓 (𝑎)𝑑𝑎

=

∫ ∞

𝑎

𝑃𝑚_𝑈𝐸𝑎

(
1 − 𝑒−𝑃𝑚_𝑈𝐸𝑎

)
𝑎^−1𝑒−^_𝐵𝑆𝑎

(^_𝐵𝑆)^
Γ(^) 𝑑𝑎

(𝑏)
=
𝑃𝑚_𝑈𝐸

^_𝐵𝑆

Γ(^ + 1)
Γ(^)

(
1 −

(
^_𝐵𝑆

^_𝐵𝑆 + 𝑃𝑚_𝑈𝐸

) ^+1)

=
𝑃𝑚_𝑈𝐸

_𝐵𝑆

©«1 − 1(
1 + 𝑃𝑚_𝑈𝐸

^_𝐵𝑆

) ^+1 ª®®¬ .

(5.18)

Here, (𝑎) holds due to the fact that 𝑁𝐵 is a random variable following a Poisson
distribution with a mean value 𝑃𝑚_𝑈𝐸𝑎 [42]. (𝑏) is derived based on the definition
of the gamma function

Γ(𝑧) =
∫ ∞

0
𝑥𝑧−1𝑒−𝑥𝑑𝑥.

Hence, Lemma 5.1 is proved. �

5.5.2 Nearest SBS Transmission Rate Analysis

In case of content miss, user requested contents are retrieved from the remote servers
via backhaul links. Before this, the user first associates to the nearest SBS which
provides the highest transmission rate. In this subsection, we provide the analysis of
the transmission rate of this cellular link.

Recall that the overlay scheme is employed in the system, and a total of (1− 𝜙)𝑊
bandwidth is allocated to cellular communications. Each SBS serves its associated
users in a TDMA manner. Those associated users can be divided into two groups:
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content miss users whose requested content is not cached locally and users whose
requested contents are cached in the SBS cluster. Thus, the users associated to each
SBS can be modeled as a PPP Φ𝐶 with parameter _𝐶 = (𝑃𝑚 + 𝑃𝑠)_𝑈𝐸 . Denote by
𝑁𝐵𝑆 the total number of SBS. Similar to (5.18), the average cell load can be obtained
by

E[𝑁𝐶 ] =
(𝑃𝑚 + 𝑃𝑠)_𝑈𝐸

_𝐵𝑆

©«1 − 1(
1 + (𝑃𝑚+𝑃𝑠)_𝑈𝐸

^_𝐵𝑆

) ^+1 ª®®¬ . (5.19)

Lemma 5.2 If a user associates to its nearest SBS B𝑜, a lower bound of the average
transmission rate is given by

E[𝑅𝑁 ] ≥
(1 − 𝜙)𝑊
E[𝑁𝐶 ] ln 2

(
2 ln

𝐺𝑚

�̄�
+ (𝛼 − 2)𝛾

2
− ln 𝐽1 (𝛼)

)
(5.20)

where

𝐽1 (𝛼) =


Γ(𝑁𝐵𝑆 + 1 − 𝛼

2 )
(1 − 𝛼

2 )Γ(𝑁𝐵𝑆)
− Γ

(
1 − 𝛼

2

)
, 𝛼 ≠ 2

ln(𝑁𝐵𝑆 − 1) + 𝛾, 𝛼 = 2
(5.21)

and 𝛾 represents the Euler-Mascheroni constant, which equals 0.577 approximately.

Proof Consider the directional antenna case, in which antenna beams of the user
and the associated SBS are aligned, the received signal strength is given by

𝑆 = 𝑃𝐵𝐺
2
𝑚ℎ1𝐶𝑟

−𝛼
1 (5.22)

where 𝑟1 denotes the distance from the user to the associated SBS. Note that the
interference consists of the signal from all the other SBSs, each of those interference
signals is independent random variables [43].

Based on the transmission model in (5.6), we can obtain the average transmission
rate as

E[𝑅𝑁 ] = E
[
(1 − 𝜙)𝑊
𝑁𝐶

log2

(
1 + 𝑆

𝐼 + 𝜎2

)]
=
(1 − 𝜙)𝑊
E[𝑁𝐶 ] ln 2

E

[
ln

(
1 + 𝑆∑

𝑖∈Φ𝐵𝑆\B𝑜 𝐼𝑖 + 𝜎2

)]
≥ (1 − 𝜙)𝑊
E[𝑁𝐶 ] ln 2

E

[
ln

𝑆∑
𝑖∈Φ𝐵𝑆\B𝑜 𝐼𝑖

]
≥ (1 − 𝜙)𝑊
E[𝑁𝐶 ] ln 2

©«E[ln 𝑆] − ln
∑︁

𝑖∈Φ𝐵𝑆\B𝑜

E [𝐼𝑖]
ª®¬ .

(5.23)

The second equation holds due to the fact that the received signal-to-interference-
plus-noise-ratio (SINR) and the cellular load are independent random variables. The
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first inequality holds because the thermal noise is negligible in high SNR scenarios.
In practice, high SNR should be guaranteed due to the reliable communication
requirements. The last inequality is directly derived from the Jensen inequality. In
what follows, we analyze E[ln 𝑆] and

∑
𝑖∈Φ𝐵𝑆\B𝑜 E[𝐼𝑖], respectively.

Firstly, from (5.22), the explicit form of E[ln 𝑆] can be given as

E[ln 𝑆] = E
[
ln

(
𝑃𝐵𝐺

2
𝑚ℎ1𝐶𝑟

−𝛼
1

)]
= ln

(
𝑃𝐵𝐺

2
𝑚𝐶

)
+ E [ln ℎ1] − 𝛼E [ln 𝑟1]

= ln
(
𝑃𝐵𝐺

2
𝑚𝐶

)
− 𝛾 + 𝛼

2
(𝛾 + ln 𝜋_𝐵𝑆) .

(5.24)

The equality holds due to the fact that:

E[ln ℎ1] =
∫ ∞

0
ln 𝑥𝑒−𝑥𝑑𝑥 = −𝛾

and

E[ln 𝑟1] =
∫ ∞

0
ln 𝑟1 𝑓 (𝑟1)𝑑𝑟1

(𝑎)
=

∫ ∞

0
ln(𝑟1)2𝜋_𝐵𝑆𝑟1𝑒

−𝜋_𝐵𝑆𝑟
2
1 𝑑𝑟1

(𝑏)
=

1
2

(∫ ∞

0
𝑒−𝑦 ln 𝑦𝑑𝑦 −

∫ ∞

0
𝑒−𝑦 ln(𝜋_𝐵𝑆)𝑑𝑦

)
= −𝛾 + ln 𝜋_𝐵𝑆

2

(5.25)

where (𝑎) holds because 𝑟1 follows distribution [43]

𝑓 (𝑟1) = 2𝜋_𝐵𝑆𝑟1𝑒
−𝜋_𝐵𝑆𝑟

2
1 .

Here, (𝑏) holds by defining an additional variable 𝑦 = 𝜋_𝐵𝑆𝑟2
1 .

Secondly, based on the average interference model in (5.9), the value of∑
𝑖∈Φ𝐵𝑆\B𝑜 E[𝐼𝑖] is given as

ln
∑︁

𝑖∈Φ𝐵𝑆\B𝑜

E[𝐼𝑖] = ln
∑︁

𝑖∈Φ𝐵𝑆\B𝑜

𝑃𝐵�̄�
2𝐶E[ℎ𝑖]E[𝑟−𝛼𝑖 ]

= ln
(
𝑃𝐵�̄�

2𝐶
)
+ ln

∑︁
𝑖∈Φ𝐵𝑆\B𝑜

E[𝑟−𝛼𝑖 ] .
(5.26)

The last equality holds because E[ℎ𝑖] = 1.
Recall that the geographic locations of both users and SBSs follow PPP, the PDF

of the distance between a user and its 𝑖-th nearest SBS 𝑟𝑖 can be expressed as [42]
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𝑓 (𝑟, 𝑖) = 2(𝜋_𝐵𝑆)𝑖
(𝑖 − 1)! 𝑟

2𝑖−1𝑒−𝜋_𝐵𝑆𝑟
2
,∀𝑖 = 2, 3...

then, the −𝛼th moment of 𝑟𝑖 can be calculated as follows:

E[𝑟−𝛼𝑖 ] =
∫ ∞

0
𝑟−𝛼 𝑓 (𝑟, 𝑖)𝑑𝑟

=

∫ ∞

0

2(𝜋_𝐵𝑆)𝑖
(𝑖 − 1)! 𝑟

2𝑖−1−𝛼𝑒−𝜋_𝐵𝑆𝑟
2
𝑑𝑟

=
(𝜋_𝐵𝑆)

𝛼
2

(𝑖 − 1)!

∫ ∞

0
𝑦

2𝑖−𝛼
2 −1𝑒−𝑦𝑑𝑦

= (𝜋_𝐵𝑆)
𝛼
2
Γ(𝑖 − 𝛼

2 )
Γ(𝑖) , if 𝑖 >

𝛼

2
.

(5.27)

Now, we turn to the summation of the −𝛼th moments of 𝑟𝑖 when 𝑖 varies.

• When 𝛼 ≠ 2, from (5.27), the summation of the −𝛼th moments of 𝑟𝑖 , for 𝑖 =
2, 3, · · · , is given by∑︁

𝑖∈Φ𝐵𝑆\B𝑜

E[𝑟−𝛼𝑖 ] = (𝜋_𝐵𝑆)
𝛼
2

𝑁𝐵𝑆∑︁
𝑖=2

Γ(𝑖 − 𝛼
2 )

Γ(𝑖)

= (𝜋_𝐵𝑆)
𝛼
2

(
Γ(𝑁𝐵𝑆 + 1 − 𝛼

2 )
(1 − 𝛼

2 )Γ(𝑁𝐵𝑆)
− Γ

(
1 − 𝛼

2

))
.

(5.28)

The last equality is a direct application of the following equality [43]

𝑛∑︁
𝑗=1

Γ( 𝑗 − 𝛽)
Γ( 𝑗) =

Γ(𝑛 + 1 − 𝛽)
(1 − 𝛽)Γ(𝑛) , 𝛽 ≠ 2. (5.29)

• When 𝛼 = 2, the summation of the moments is given by∑︁
𝑖∈Φ𝐵𝑆\B𝑜

E[𝑟−𝛼𝑖 ] = (𝜋_𝐵𝑆)
𝛼
2

𝑁𝐵𝑆∑︁
𝑖=2

Γ(𝑖 − 1)
Γ(𝑖)

= (𝜋_𝐵𝑆)
𝛼
2

𝑁𝐵𝑆−1∑︁
𝑖=1

1
𝑖

≈ (𝜋_𝐵𝑆)
𝛼
2 (ln(𝑁𝐵𝑆 − 1) + 𝛾)

(5.30)

where the equality holds if 𝑁𝐵𝑆 is sufficient large, which is true in dense networks.
By combining (5.28) and (5.30) with (5.26), the summation of average interfer-

ence power can be obtained in this logarithmic form as

ln
∑︁

𝑖∈Φ𝐵𝑆\B𝑜

E[𝐼𝑖] = ln 𝑃𝐵�̄�2𝐶 + 𝛼
2

ln 𝜋_𝐵𝑆 + ln 𝐽1 (𝛼) (5.31)
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where 𝐽1 (𝛼) is defined in (5.21). Substituting (5.24) and (5.31) into (5.23) concludes
the proof of Lemma 5.2. �

Remark 5.1 Lemma 5.2 characterizes the impact of system parameters on the
performance of the nearest SBS transmission, including the network density,
the directional antenna gain, and the path loss exponent. We can have the
following observations.

• Firstly, the average transmission rate grows linearly with the directional
antennas gain, i.e., 𝐺𝑚/�̄�, indicating that the employment of directional
antennas can effectively improve the throughput of mmWave systems.

• Secondly, the average transmission rate increases linearly with the path loss
exponent 𝛼, this is because the high path loss of mmWave signals largely
mitigates mutual interference and contributes to a spatial reuse gain.

• Finally, the transmission performance slightly drops with network density,
since the value of ln 𝐽1 (𝛼) slightly increases with the number of SBSs 𝑁𝐵𝑆 .
This is because the distance of both communication signals and interference
signals is affected by the network density.

5.5.3 SBS Cluster Transmission Rate Analysis

Recall that each SBS in the cluster is designed to cache contents with equal overall
content hit ratio, each user thus associates to any SBS in the cluster with the same
probability, which means that the average transmission rate should be averaged over
all the candidate SBSs.

Lemma 5.3 The average transmission rate of users associating to SBS clusters is
given by

E[𝑅𝐶 ] ≥
(1 − 𝜙)𝑊
E[𝑁𝐶 ] ln 2

(
2 ln

𝐺𝑚

�̄�
+ (𝛼 − 2)𝛾

2

− 𝛼
2𝐾

𝐾∑︁
𝑘=1

𝑘−1∑︁
𝑖=1

1
𝑖
− 1
𝐾

𝐾∑︁
𝑘=1

ln 𝐽2 (𝛼, 𝑘)
) (5.32)

where
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𝐽2 (𝛼, 𝑘) =



Γ(𝑁𝐵𝑆 + 1 − 𝛼
2 )

(1 − 𝛼
2 )Γ(𝑁𝐵𝑆)

−
Γ(𝑘 − 𝛼

2 )
Γ(𝑘) , 𝛼 < 2

𝐸1 (𝑟0) + ln(𝑁𝐵𝑆 − 1) + 𝛾 − 𝐽4 (𝑘), 𝛼 = 2

Γ

(
1 − 𝛼

2
, 𝑟0

)
+
Γ(𝑁𝐵𝑆 + 1 − 𝛼

2 )
(1 − 𝛼

2 )Γ(𝑁𝐵𝑆)
− Γ

(
1 − 𝛼

2

)
− 𝐽3 (𝑘)

(5.33)

𝐽3 (𝑘) =


Γ(1 − 𝛼

2
, 𝑟0), 𝑘 = 1

Γ(𝑘 − 𝛼
2 )

Γ(𝑘) , 𝑘 ≥ 2,
(5.34)

𝐽4 (𝑘) =

𝐸1 (𝑟0), 𝑘 = 1

1
𝑘 − 1

, 𝑘 ≥ 2.
(5.35)

where 𝑟0 = 𝜋_𝐵𝑆𝑑
2
0 . Here,

Γ(𝑧, 𝑎) =
∫ ∞

𝑎

𝑥𝑧−1𝑒−𝑥𝑑𝑥

and
𝐸1 (𝑥) =

∫ ∞

𝑥

1
𝑡
𝑒−𝑡𝑑𝑡

are the incomplete gamma function and the exponential integral function, respec-
tively.

Proof Denote by B𝑜 = {B1
𝑜,B2

𝑜, ...,B𝑘𝑜 , ...,B𝐾𝑜 } the set of candidate SBSs from
the cluster, sorted according to the physical distances in ascending order. The corre-
sponding set of physical distances is {𝑟1, 𝑟2, ..., 𝑟𝑘 , ..., 𝑟𝐾 }.

If a user associates to the 𝑘th nearest SBS B𝑘𝑜 , the expected received signal
strength is given by

𝑆𝑘𝐶 = 𝑃𝐵𝐺
2
𝑚ℎ1𝐶𝑟

−𝛼
𝑘 , 1 ≤ 𝑘 ≤ 𝐾. (5.36)

The corresponding interference strength is given by

𝐼𝑘𝐶 =
∑︁

𝑖∈Φ𝐵𝑆\B𝑘
𝑜

𝑃𝐵𝐺 (\𝑡 ,𝑖)𝐺 (\𝑟 ,𝑖)ℎ𝑖𝐶𝑟−𝛼𝑖 , 1 ≤ 𝑘 ≤ 𝐾. (5.37)

Let 𝑅𝑘
𝐶

denote the average transmission rate between the user and its 𝑘th nearest
SBS, the average transmission rate among all the SBSs in the cluster is given by
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E[𝑅𝐶 ] = E
[

1
𝐾

𝐾∑︁
𝑘=1

𝑅𝑘𝐶

]
=
(1 − 𝜙)𝑊

𝐾E[𝑁𝐶 ] ln 2

𝐾∑︁
𝑘=1

ln

(
1 +

𝑆𝑘
𝐶

𝐼𝑘
𝐶
+ 𝜎2

)
≥ (1 − 𝜙)𝑊
𝐾E[𝑁𝐶 ] ln 2

𝐾∑︁
𝑘=1

©«E[ln 𝑆𝑘𝐶 ] − ln
∑︁

𝑖∈Φ𝐵𝑆\B𝑘
𝑜

𝐼𝑘𝑖
ª®¬

=
(1 − 𝜙)𝑊
E[𝑁𝐶 ] ln 2

(
2 ln

(
𝐺𝑚

�̄�

)
− 𝛾 − 𝛼

𝐾

𝐾∑︁
𝑘=1
E[ln 𝑟𝑘 ]

− 1
𝐾

𝐾∑︁
𝑘=1

ln
∑︁

𝑖∈Φ𝐵𝑆\B𝑘
𝑜

E[𝑟−𝛼𝑖 ]
ª®¬ .

(5.38)

The inequality holds due to the lower bound in (5.23). The last step holds due to
(5.24) and (5.26). Then, according to [25], E[ln 𝑟𝑘 ] is given by

E[ln 𝑟𝑘 ] = −
1
2

(
𝛾 + ln(𝜋_𝐵𝑆) −

𝑘−1∑︁
𝑖=1

1
𝑖

)
. (5.39)

Then, we derive the expression of
∑
𝑖∈Φ𝐵𝑆\B𝑘

𝑜
E[𝑟−𝛼

𝑖
] in different cases respec-

tively.

• When 𝛼 < 2, from (5.27), we have∑︁
𝑖∈Φ𝐵𝑆\B𝑘

𝑜

E[𝑟−𝛼𝑖 ] =
𝑁𝐵𝑆∑︁
𝑖=1
E[𝑟−𝛼𝑖 ] − E[𝑟−𝛼𝑘 ]

= (𝜋_𝐵𝑆)
𝛼
2

(
Γ(𝑁𝐵𝑆 + 1 − 𝛼

2 )
(1 − 𝛼

2 )Γ(𝑁𝐵𝑆)
−
Γ(𝑘 − 𝛼

2 )
Γ(𝑘)

)
.

(5.40)

• When 𝛼 = 2, E[𝑟−𝛼1 ] =
∫ ∞
𝑟0

1
𝑦
𝑒−𝑦𝑑𝑦 = 𝐸1 (𝑟0) according to the exponential

integral function 𝐸1 (𝑥). From (5.30), if 𝑘 ≥ 2, it holds that E[𝑟−𝛼
𝑘
] = 1

𝑘−1 .
Hence, E[𝑟−𝛼

𝑘
] can be represented by a piecewise function 𝐽4 (𝑘) given in (5.35).

Similar to (5.43), we have∑︁
𝑖∈Φ𝐵𝑆\B𝑘

𝑜

E[𝑟−𝛼𝑖 ] = (𝜋_𝐵𝑆) (𝐸1 (𝑟0) + ln(𝑁𝐵𝑆 − 1) + 𝛾 − 𝐽4 (𝑘)) . (5.41)

• When 𝛼 > 2, E[𝑟−𝛼1 ] cannot be bounded as the condition 𝑖 > 𝛼
2 in (5.27) is no

longer met. This is because the path loss model in (5.4) becomes invalid when
the distance is less than 𝑑0. To address this issue, a guard radius 𝑑0 is imposed
to receivers in order to exclude interference origins in the short distance. Hence,
−𝛼th moments of 𝑟1 becomes
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E[𝑟−𝛼1 ] =
∫ ∞

𝑑0

𝑟−𝛼1 𝑓 (𝑟1)𝑑𝑟1

= (𝜋_𝐵𝑆)
𝛼
2

∫ ∞

𝜋_𝐵𝑆𝑑
2
0

𝑦
2−𝛼

2 −1𝑒−𝑦𝑑𝑦

= (𝜋_𝐵𝑆)
𝛼
2 Γ(1 − 𝛼

2
, 𝑟0).

(5.42)

Thus,
∑
𝑖∈Φ𝐵𝑆\B𝑘

𝑜
E[𝑟−𝛼

𝑖
] is given by

∑︁
𝑖∈Φ𝐵𝑆\B𝑘

𝑜

E[𝑟−𝛼𝑖 ] = E[𝑟−𝛼1 ] +
𝑁𝐵𝑆∑︁
𝑖=2
E[𝑟−𝛼𝑖 ] − E[𝑟−𝛼𝑘 ]

= (𝜋_𝐵𝑆)
𝛼
2

(
Γ(1 − 𝛼

2
, 𝑟0) − Γ(1 −

𝛼

2
)

+
Γ(𝑁𝐵𝑆 + 1 − 𝛼

2 )
(1 − 𝛼

2 )Γ(𝑁𝐵𝑆)
− 𝐽3 (𝑘)

)
.

(5.43)

By substituting (5.39), (5.40), (5.43) and (5.41) into (5.38) concludes the proof
of Lemma 5.3. �

Remark 5.2 Lemma 5.3 characterizes the transmission performance of the SBS
cluster with respect to different system parameters. Here are some important
observations. Similar to the conclusion in Lemma 5.2, the average SBS cluster
transmission rate slightly drops with network density, since 𝐽2 (𝛼, 𝑘) slightly
grows with network density. This lemma also shows that the transmission rate
reduces with the cluster size, which highlights the balance between caching
diversity and transmission efficiency. Increasing cluster size leads to a higher
cache capacity that can cache more contents, yet, the transmission performance
drops as users are required to retrieve contents from a longer distance.

5.5.4 D2D Transmission Rate Analysis

In this subsection, we analyze the D2D caching performance. Recall that the distri-
bution of D2D users follows a homogeneous PPP, Φ𝐷 , with density _𝐷 = 𝑃𝑑_𝑈𝐸 .
Compared with SBS, mobile users obtain a smaller directional antenna gain, due to
limited antenna space. Let 𝐺𝑚𝑢 and �̄�𝑢 represent the maximal and average antenna
gain of users’ main lobe, respectively. In an overlay scheme, a total of 𝜙𝑊 system
bandwidth is allocated to D2D communications.

Lemma 5.4 A lower bound of the average D2D transmission rate can be given by
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E[𝑅𝐷] ≥
𝜙𝑊

ln 2

(
2 ln

𝐺𝑚𝑢

�̄�𝑢
− 𝛾 − 𝛼

(
ln 𝑟𝑚𝑎𝑥𝑑 − 1

2

)
− ln(𝜋_𝐷) − ln 𝐽5 (𝛼)

)
(5.44)

where

𝐽5 (𝛼) =



𝑅2−𝛼

1 − 𝛼
2
, 𝛼 < 2

2 ln
(
𝑅

𝑑0

)
, 𝛼 = 2

𝑅2−𝛼 − 𝑑2−𝛼
0

1 − 𝛼
2

, 𝛼 > 2

(5.45)

where 𝑅 =

√︃
𝑁𝐷

𝜋_𝐷
, and 𝑁𝐷 is the amount of D2D transmitters.

Proof If a user retrieves contents from its D2D peer via a mmWave link, the received
signal power is determined by

𝑆𝐷 = 𝑃𝑈 (𝐺𝑚𝑢 )2ℎ1𝐶𝑟
−𝛼
𝑑 . (5.46)

The received interference, which consists of signals from all the other D2D
transmitters Φ𝐷 , is expressed as

𝐼𝐷 =
∑︁
𝑖∈Φ𝐷

𝑃𝑈𝐺𝑢 (\𝑡 ,𝑖)𝐺𝑢 (\𝑟 ,𝑖)ℎ𝑖𝐶𝑟−𝛼𝑖 (5.47)

where 𝑟𝑖 is the distance from the user to the 𝑖-th source of D2D interference.
Similarly, an lower bound of the average D2D transmission rate can be obtained

as follows

E[𝑅𝐷] = 𝜙𝑊 log2

(
1 + 𝑆𝐷

𝐼𝐷 + 𝜎2

)
≥ 𝜙𝑊

ln 2

(
E[ln 𝑆𝐷] − ln

∑︁
𝑖∈Φ𝐷

E[𝐼 𝑖𝐷]
)

≥ 𝜙𝑊
ln 2

(
2 ln

𝐺𝑚𝑢

�̄�𝑢
− 𝛾 − 𝛼E[ln 𝑟𝑑] − ln

∑︁
𝑖∈Φ𝐷

E[𝑟−𝛼𝑖 ]
)
.

(5.48)

Using the same approach in (5.24), combining the PDF of 𝑟𝑑 in (5.1), E[ln 𝑟𝑑] is
given by

E[ln 𝑟𝑑] =
∫ 𝑟𝑚𝑎𝑥

𝑑

0
ln 𝑟𝑑

2𝑟𝑑
(𝑟𝑚𝑎𝑥
𝑑
)2
𝑑𝑟𝑑

= ln 𝑟𝑚𝑎𝑥𝑑 − 1
2
.

(5.49)
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For the term
∑
𝑖∈Φ𝐷

E[𝑟−𝛼
𝑖
] in (5.48), it can be obtained in the following way.

Note that 𝑟𝑖 denotes the inter-node distances of PPP, which follows a generalized
beta distribution [43]. The −𝛼th moment of 𝑟𝑖 is given by

E[𝑟−𝛼𝑖 ] =


𝑅−𝛼Γ(𝑁𝐷 + 1)Γ(𝑖 − 𝛼

2 )
Γ(𝑖)Γ(𝑁𝐷 + 1 − 𝛼

2 )
, 𝛼 < 2

∞, 𝛼 ≥ 2
(5.50)

where 𝑅 =

√︃
𝑁𝐷

𝜋_𝐷
is the equivalent cell radius, 𝑁𝐷 is the number of D2D users. The

summation of the −𝛼th moments of 𝑟𝑖 can be generalized into different forms when
the value of 𝛼 varies.

• When 𝛼 < 2, the summation of moment can be obtained by∑︁
𝑖∈Φ𝐷

E[𝑟−𝛼𝑖 ] =
𝑅−𝛼Γ(𝑁𝐷 + 1)
Γ(𝑁𝐷 + 1 − 𝛼

2 )

𝑁𝐷∑︁
𝑖=1

Γ(𝑖 − 𝛼
2 )

Γ(𝑖)

= 𝜋_𝐷
𝑅2−𝛼

1 − 𝛼
2

(5.51)

where the last equality holds due to the fact 𝜋𝑅2_𝐷 = 𝑁𝐷 .
• When 𝛼 > 2, the moment of 𝑟𝑖 cannot be bounded as the adopted path loss model

no longer holds at short distances. This case can be tackled by imposing a guard
radius 𝑑0 around each receiver, i.e., data transmission with a distance less than 𝑑0
is not allowed. According to (5.51), the sum of interference within distance 𝑑0 is
expressed as 𝜋_𝐷𝑑2−𝛼

0 /(1 − 𝛼
2 ). By excluding the interference inside the guard

radius, we have ∑︁
𝑖∈Φ𝐷

E[𝑟−𝛼𝑖 ] = 𝜋_𝐷
𝑅2−𝛼 − 𝑑2−𝛼

0
1 − 𝛼

2
. (5.52)

• When 𝛼 = 2, taking limits on the right-hand side of (5.52), we have∑︁
𝑖∈Φ𝐷

E[𝑟−𝛼𝑖 ] = 2𝜋_𝐷 ln
(
𝑅

𝑑0

)
. (5.53)

By substituting (5.49), (5.51), (5.52) and (5.53) into (5.48), Lemma 5.4 is proved.�

Remark 5.3 Lemma 5.4 characterizes the impact of physical layer parameters
on the transmission performance of D2D communications. Most notably, it is
shown by analytical results that the transmission performance reduces as the
user density grows. This is due to the fact that the transmission distance of
interference links scales with the density of network, while that of D2D link
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remains unchanged. With Lemma 5.2 and Lemma 5.3 and Lemma 5.4, we
may observe that the average D2D transmission rate decreases dramatically
with the network density, while the performance of cellular transmissions is
less sensitive to network density. Consequently, the content retrieval delay via
D2D communications highly depends on the network density, necessitating a
coordination scheme for D2D communications.

5.6 Performance Evaluation

In this section, the analytical results are validated via extensive Monte-Carlo sim-
ulations. Meanwhile, we evaluate the proposed DCEC policy by comparing with
the state-of-the-art benchmark polices. Firstly, the simulation setup is given in
Section 5.6.1, followed by the backhaul offloading performance evaluation in Sec-
tion 5.6.2. Analytical results on transmission performance and content retrieval delay
are presented in Section 5.6.3 and Section 5.6.4, respectively.

5.6.1 Simulation Setup

Table 5.2 summarizes important simulation parameters. We simulate a plane network
with area 1 km2 (1000 m× 1000 m). For the mmWave system, we consider the ratified
IEEE 802.11ad standard operating at the 60 GHz unlicensed band. A total of 2.16
GHz bandwidth is allocated [44], in which 80% of the bandwidth is allocated to
cellular communications and 20% to D2D communications. The model parameters
of the directional antennas are configured empirically [33]. Totally, we consider three
typical scenarios: a conference room with LOS connections, a living room with LOS
links and with NLOS links. Their corresponding path loss exponents are set to be
1.4, 1.6, and 2, respectively. Due to the limited battery and space on mobile devices,
mobile users can only support a lower transmitting power and less directional antenna
gain, as compared with SBS. The backhaul capacity is constrained and set to be 3
Gbit/s unless otherwise specified. The SBS density of the mmWave networks ranges
from 80 to 400 per km2, with an average cell radius varying from 65 to 30 meters,
corresponding to the scope from sparse rural to dense urban. The user density is
configured from 800 to 4000 per km2, where 80% of the users are successfully
paired. We consider a library of 2000 contents in total. The cache capacity of users
and SBSs are set to be 150 and 200 (in unit of contents), respectively. Unless
specified, the application of video streaming is considered, which has a content
popularity skewness of 0.56 [26].

The state-of-the-art most popular caching (MPC) policy is adopted as the com-
parison benchmark. In this policy, the user and its associated SBS only collectively
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Table 5.2: Simulation parameters in cooperative caching.

Notation Parameter Value
𝐴 Simulation area 1 km2

𝑁𝑜 Background noise density −174 dBm/Hz
𝑊 Bandwidth 2.16 GHz
𝜙 Fraction of D2D spectrum 20%
𝑓 Carrier frequency 60 GHz
𝛼 Path loss exponent {1.4, 1.6, 2}
𝑃𝐵 SBS transmit power 30 dBm
𝑃𝑈 User transmit power 20 dBm
𝐺𝑚

𝑠 SBS main lobe gain 18 dB
𝐺𝑠

𝑠 SBS side lobe gain −2 dB
𝐺𝑚

𝑢 User main lobe gain 9 dB
𝐺𝑚

𝑢 User side lobe gain −2 dB
𝜔𝑚 Half-power beamwidth 10𝑜
𝑑0 Reference distance 1 m
𝑟𝑚𝑎𝑥
𝑑

Maximum D2D distance 10 m
_𝐵𝑆 Network density {80-400} per km2

_𝑈𝐸 User density {800-4000} per km2

𝛿 Fraction of paired users 80%
𝐹 Content library size 2000
a Average content size 100 Mbit
𝐶𝑢 User cache capacity 150
𝐶𝑠 SBS cache capacity 200

cache the most popular contents, i.e., { 𝑓1, 𝑓2, ..., 𝑓𝐶𝑢
} and { 𝑓𝐶𝑢+1, 𝑓𝐶𝑢+2, ..., 𝑓𝐶𝑢+𝐶𝑠

},
respectively.

5.6.2 Backhaul Offloading Performance

Figure 5.2 shows the comparison of backhaul offloading performance with varying
content popularity skewness. Clearly, the proposed DCEC policy significantly out-
performs the benchmark policy, since it is able to exploit the cache resource in an
efficient manner. In specific, the DCEC policy can offload about more than 50%
of the backhaul traffic than the MPC policy when content skewness b = 0.6. It is
observed that the gap narrows down with the increase of popularity skewness. This
is because the cache capacities of an individual user and its associated SBS are
adequate to store contents with highly concentrated popularity.

Figure 5.3 demonstrates how the SBS cache capacity affects the backhaul offload-
ing performance. Clearly, the increase of SBS cache capacity leads to a higher portion
of offloaded backhaul traffic, as more contents can be cached locally. Interestingly,
the caching capacity growth provides a higher gain in the small-skewness region than
that in the large-skewness region. This is because the higher the skewness, the more
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Fig. 5.2: Backhaul offloading performance with respect to content popularity skew-
ness.

concentrated the content popularity, and hence less cache resources can efficiently
provisioning more content requests.

We further validate the performance of backhaul offloading with respect to the
SBS cluster size, as shown in Fig. 5.4, significant backhaul offloading gain can be
achieved by increasing the SBS cluster size when the content popularity is less
skewed (b = 0.3 and 0.56). In specific, when b = 0.56, the proposed DCEC policy
with 8 SBSs can offload more than 70% of the backhaul traffic, compared with that
of two SBSs. In contrast, for a large value of b, the performance gain resulting from
a high cluster size becomes marginal. Hence, the proposed DCEC policy is more
likely to be applied in applications with less concentrated content popularity.

5.6.3 Transmission Performance

In this subsection, extensive simulations are carried out to validate the analytical
results on the transmission performance. To avoid randomness, the presented results
are the average over 10,000 samples of different realizations of network topologies
and channel fading.

Figure 5.5 shows how the transmission rate of the nearest SBS varies with network
density for 𝛼 = 1.4, 1.6, 2. The lower bounds obtained from Lemma 5.2 well
matches the simulation results under various channel conditions, which confirms the
correctness of the analytical results. We can also observe that the average rate slightly
drops with network density. In the case of 𝛼 = 2, the reduction of transmission rate
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Fig. 5.4: Backhaul offloading performance with respect to SBS cluster size.

is only 8% when network density increases from 80 to 400 per km2. When 𝛼 = 1.4,
the transmission rate reduces by only 15%. Meanwhile, the average transmission
rate increases with 𝛼 because interference is suppressed by severe propagation loss
in mmWave channels.



146 5 Beamforming-Aided Cooperative Edge Caching in mmWave Dense Networks

100 150 200 250 300 350 400

Network Density 
BS

 (per km2)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

A
v
e

ra
g

e
 T

ra
n

s
m

is
s
io

n
 R

a
te

 (
G

b
it
/s

)

Simulations, =2

Analytical bound, =2

Simulations, =1.6

Analytical bound, =1.6

Simulations, =1.4

Analytical bound, =1.4

Fig. 5.5: The nearest SBS transmission rate with respect to the network density.

Figure 5.6 shows the average SBS cluster transmission rate in different scenario
of network density, when the value of 𝛼 = 1.4, 1.6, 2. It can be observed that
the gap between simulation results and the analytical bounds narrows with network
density, which validates the correctness of Lemma 5.3. In addition, the transmission
performance is shown to slightly decrease with network density, which is analogous
with that of the nearest SBS. In particular, when 𝛼 = 2, the average transmission
rate drops by approximately 10%, when the network turns from a sparse one with
_𝐵𝑆 = 80 to a dense one with _𝐵𝑆 = 400.

In Fig. 5.7 shows the average transmission rates with respect to the network
density at different cluster size 𝐾 . Analytical results well match the simulation
results, which corroborates the correctness of Lemma 5.3. Notably, the average SBS
cluster transmission rate drops with the cluster size. Specifically, the SBS cluster
with two SBSs can achieve a data rate of 1.08 Gbit/s when _𝐵𝑆 = 80, while the
SBS cluster with 4 SBSs only attains a data rate of 0.83 Gbit/s at the equal network
density, denoting a decrease of nearly 23%. This is due to the fact that users can
retrieve their target contents from remote SBSs. A large SBS cluster size indicates
that more contents can be achieved while reducing the average transmission rate,
which highlights the balance between caching diversity and transmission efficiency.

Figure 5.8 shows the average D2D transmission rate varying with the D2D user
density when 𝛼 = 1.4, 1.6, 2. Simulation results are well bounded by the analytical
results from Lemma 5.4 in various channel conditions. Firstly, due to short com-
munication distance, D2D communications provide a higher transmission rate than
cellular communications, which guarantees a low content retrieval delay. Secondly,
a sharp performance degradation is observed when the D2D user density grows, as
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Fig. 5.6: SBS cluster transmission rate with respect to network density (𝐾 = 2).

100 150 200 250 300 350 400

Network Density 
BS

 (per km2)

0.5

0.6

0.7

0.8

0.9

1

A
v
e

ra
g

e
 T

ra
n

s
m

is
s
io

n
 R

a
te

 (
G

b
it
/s

)

Simulations K=2

Analytical bound K=2

Simulations K=3

Analytical bound K=3

Simulations K=4

Analytical bound K=4

Fig. 5.7: SBS cluster transmission rate with respect to the network density (𝛼 = 1.6).

the transmission rate drops from 4 Gbit/s to only 2 Gbit/s when the D2D user density
changes from 40 to 800 per km2 for 𝛼 = 1.6. This is because the expected signal
strength remains the same as D2D communication distance is not affected by user
density. In contrast, the interference increases drastically as the distance of interfer-
ence link reduces with the D2D user density. Consequently, it is required to design
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Fig. 5.8: D2D transmission rate with respect to D2D user density.

a coordinated scheduling policy so as to enhance D2D transmission performance in
dense networks.

5.6.4 Content Retrieval Delay

We evaluate the delay of content retrieval of different caching policies, varying
content popularity distributions, ranging network density and backhaul capacity, as
well as different cluster sizes.

Figure 5.9 demonstrates how content popularity skewness affects the average
delay of content retrieval. It is clear that the proposed DCEC policy outperforms the
MPC benchmark in low popularity skewness region. This is because contents with
less concentrated popularity distribution favor large cache capacity. For instance, the
proposed DCEC policy with 4 SBSs can decrease 48% of the content retrieval delay,
compared with that of the MPC for b = 0.6. Nevertheless, the achieved performance
gain by the DCEC diminishes with the increase of skewness, which further confirms
that the DCEC policy is significant in applications with less concentrated content
popularity.

The delay of content retrieval with respect to the network density is evaluated for
b = 0.56. As shown in Fig. 5.10, simulation results well match that of the analytical
bounds. Meanwhile, the delay of content retrieval grows with network density, since
the transmission rate of both cellular and D2D drops in dense networks. For example,
users may spend around 23% more time for content retrieval when network density
changes from 80 to 400 per km2 for 𝐾 = 4. More importantly, with the help of
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Fig. 5.9: Content retrieval delay with respect to content popularity.
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Fig. 5.10: Content retrieval delay with respect to network density.

high-rate cellular and D2D communications, the DCEC policy with 4 SBSs is able
to reduce as much as 45% of the delay when compared with the MPC benchmark.

As shown in Fig. 5.11, the average transmission delay varies with the backhaul
capacity. The performance gain achieved by the DCEC policy becomes marginal
with the increase of backhaul capacity. If the backhaul capacity happens to be the
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Fig. 5.11: Content retrieval delay with respect to backhaul capacity.
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Fig. 5.12: The impact of SBS cluster size on the content retrieval delay.

bottleneck of the system performance, the proposed DCEC policy cooperatively
caches more contents in edge networks, which helps to suppress the content retrieval
delay. However, if the backhaul capacity is unconstrained, the performance gain
drops as users can fetch interested contents at low delay cost from remote servers.
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Figure 5.12 demonstrates how the size of SBS cluster affects the average delay
of content retrieval for _𝐵𝑆 = 100, 200, 400. Recall that we should strike a balanced
between the transmission efficiency and the caching diversity. It is observed that the
average delay of content retrieval first drops and then grows with the SBS cluster size,
which indicates that if the SBS cluster size is excessively large, the gain of cooperative
edge caching diminishes. This is because that a large SBS cluster enables the caching
of more popular contents. At the meantime, it reduces the average transmission rate
as the physical distances for content retrieval become longer. Lastly, the possible
balance between caching diversity and transmission performance implies that there
exists an optimal size of SBS cluster. In specific, when _𝐵𝑆 = 100, the optimal
cluster size is 7. If the network density grows to 400 per km2, the optimal value
drops to 6.

Finally, Fig. 5.13 shows the decrease of optimal SBS cluster size with backhaul
capacity, which means that a large value of SBS cluster is preferred in backhaul
capacity-limited scenarios. This is because higher backhaul capacity can effectively
boost the performance gain of the DCEC policy. For instance, the optimal cluster
size is 7 when the backhaul capacity is 2 Gbit/s, but it drops to 3 when the capacity
becomes 16 Gbit/s.
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5.7 Summary

In this chapter, we have introduced a D2D-assisted cooperative edge caching policy
for mmWave dense networks. The closed-form expressions of the backhaul offloading
gain and the delay of content retrieval of the introduced policy have been provided,
accounting for both the directional antenna model and the network density. It is
revealed by both the analytical and simulation results that, the average content
retrieval delay grows with the network density. In addition, the balance between
caching diversity and transmission efficiency has been highlighted. Compared with
the state-of-the-art MPC caching benchmark, the introduced policy achieves notable
performance gains in terms of backhaul traffic offloading and the delay of content
retrieval.
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Chapter 6
Summary and Future Directions

Abstract In this chapter, we first summarize the main content, including algorithm
design, analytical results, experimental results, and practical insights, presented in
this monograph, and then highlight future research directions of mmWave network
design and analysis.

6.1 Summary

This monograph provides the latest research work on improving the performance of
mmWave networks. Considering the distinct highly directional feature of mmWave
communications, it is vital to achieve efficient and, more importantly, practical solu-
tions in mmWave networks. To this end, a comprehensive and systematic study which
analyzes and designs the communication layers to address those new challenges is
necessary. In the following, we summarize the main contents of the monograph.

6.1.1 Beam Alignment Scheme Design

From the perspective of the physical layer, the antenna of both the transmitter and the
receiver should be aligned, in order to establish reliable communication links. The
beam alignment (BA) process, however, may incur significant latency at the order of
seconds due to the prohibitive complexity of exhaustively searching the entire beam
space. Chapter 3 presents an efficient BA algorithm for mmWave communications.
Specifically, the BA process is formulated as a multi-armed bandit (MAB) problem.
A learning-based algorithm, named HBA, has been proposed to solve the MAB prob-
lem. The HBA algorithm leverages the correlation structure among beams and the
prior knowledge on the channel fluctuation to speed up the BA process. Theoretical
analysis has been provided to characterize the asymptotic optimality and conver-
gence speed of the HBA algorithm. Through extensive simulations, the effectiveness
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of the proposed algorithm has been validated, as compared to existing BA method
in 802.11ad.

6.1.2 MAC Performance Evaluation and Enhancement

In medium access control (MAC) layer, in order to coordinate the beamforming
(BF) training among multiple users, the IEEE 802.11ad protocol requires all the
users to compete for BF training resources without any coordination, which results
in frequent collisions in the BF training stage. Thus, how to optimize the MAC
parameters towards the maximal global welfare of the system is critical to a mmWave
network. In order to effectively manage the network, an accurate modeling of the
MAC performance is of paramount importance. To this end, Chapter 4 is dedicated
to the evaluation of the MAC performance of mmWave networks. We have focused
on the BFT-MAC specified by 802.11ad, and have established a simple yet accurate
analytical model to evaluate the performance of BFT-MAC. Based on the analytical
model, the normalized throughput and average BF training latency have been derived,
accounting for different user densities and configurations of BFT-MAC. The derived
analytical model provides insightful guidance on practical configurations of BFT-
MAC in different scenarios. To improve the performance of BFT-MAC in high
user density scenarios, we have proposed an enhancement scheme which adaptively
configures the MAC parameters based on user density. Extensive simulations have
been performed, and the results validate the correctness of the derived analytical
model and the effectiveness of the proposed enhancement scheme.

6.1.3 Backhaul Alleviation Scheme Design

From the perspective of the network layer, it is infeasible to deploy unconstrained
wired backhaul links in mmWave dense networks due to prohibitive costs, which
results in backhaul congestion, especially in urban scenarios. Thus, developing ef-
fective solutions to alleviate the backhaul burden links is essential. In this regard,
we resort to the emerging edge caching technology which proactively stores popular
contents in user’s proximity during off-peak hours. In Chapter 5, we target at develop-
ing efficient caching policy to alleviate the backhaul congestion and reduce content
retrieval delay in mmWave dense networks. We have proposed the DCEC policy
by leveraging the caching resources of both mobile users and small base stations
(SBSs) to increase the set of cache contents. Considering both the directional antenna
and network density, we have applied the theory of stochastic geometry to derive
closed-form expressions on the content retrieval delay performance of the proposed
caching policy. Analytical results provide practical guidelines to future mmWave de-
ployment. Comprehensive simulation results validate the accuracy of our analytical
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results and demonstrate that the proposed caching policy can effectively alleviate the
backhaul burden.

6.2 Future Directions

Although millimeter-wave (mmWave) communications has emerged as one of the
most promising technologies to support mobile data-intensive applications with
different QoS requirements, there are still many open issues to be investigated. Next,
we outline several important future research directions.

6.2.1 Beam Alignment Under High Mobility

It is widely acknowledged that the performance of mmWave communications sig-
nificantly degrades in high mobility scenarios. The underlying reasons are two-fold.
Firstly, the beam direction changes with user mobility, which results in frequent
beam misalignment and dis-connection between the transmitter and receiver. Sec-
ondly, mobile users also suffer from the blockage issue. For example, in vehicular
mmWave networks, vehicular users not only need to frequently align their beams
with roadside BSs, but also deal with the LOS obstructions caused by either build-
ings or other vehicles (e.g., buses and trucks). Thus, the established mmWave link
is intermittent and short-lived, which leads to a high probability of communication
outage. It is critical to establish reliable mmWave communication links in mobile
scenarios. As high-mobility users usually moves along a specific trajectory, such as
vehicles usually follow the road lane, such trajectory information can be exploited to
enhance mmWave communications in high mobility scenarios. For example, based
on the velocity and moving direction of a vehicle, BS can predict the future locations
of the vehicle so as to proactively align their beams before the link outage. However,
as the real-time moving direction and location information are usually unknown to
the BS a priori, an efficient and effective prediction scheme is necessary to optimally
determine the beam direction based on the trajectory feature of mobile users and
meanwhile maximize their quality of service (QoS).

6.2.2 Efficient QoS-Aware MAC Protocol

Currently, the physical layer techniques of mmWave networks have been well studied,
e.g., BF. However, the study from the perspective of MAC layer is rather limited. Even
with improved physical layer schemes, a coarse MAC protocol would still result in
poor network performance. The design of enhanced MAC protocols becomes a new
challenge of the entire mmWave network due to the following two reasons. Firstly,
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based on our analytical results in Chapter 4, the MAC throughput in the BF training
stage degrades significantly in high-density scenarios, which limits the application of
mmWave networks in dense-user scenarios. Secondly, since the type of data traffic
becomes diverse, future mmWave networks should support heterogeneous traffic
while satisfying various levels of QoS requirements. However, the MAC protocols
in mmWave networks are not only inefficient, but also do not consider the diversified
requirements for different services. Thus, designing an efficient and QoS-aware MAC
protocol is of paramount importance for future mmWave networks.

6.2.3 Blockage-Aware mmWave Network

The blockage problem is regarded as one of thorny open issues in mmWave networks,
especially in indoor scenarios. The mmWave connections can be easily suppressed
when the LOS path is blocked by either the human body or indoor infrastructure
(e.g., pillar and desk), which results in high link outage probability and unstable
connections. When link outage occurs, the link has to be re-established, which
results in frequent beam realignment at the cost of increased latency. In addition, the
consequence of latency caused by the link outage are amplified at higher network
layers. For example, at the transport layer, link outage may lead to time-out, and
the transmission control protocol (TCP) connections are thus re-established, which
further exacerbates the latency. Since a mobile user cannot always be served by one
BS, exploring a user-centric framework that simultaneously serves a mobile user
with multiple BSs is a practical solution. Specifically, when the system detects the
connection between a mobile user and a BS is blocked, it proactively transfers to a new
connection between the mobile user and another BS. In this way, the latency caused
by link establishment can be ignored since the backup connection is established in
time. However, how to accurately and proactively identify blockage is a challenging
issue. In addition, developing an effective and low complexity link re-establishment
solution between mobile users and BSs requires further investigation.


