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Abstract Deep neural network (DNN) inference with low delay and high accuracy
requirements is usually computation-intensive. The collaboration among mobile
devices and the network edge is a potential solution to support DNN inference.
Moreover, the sampling rates of mobile devices can be dynamically configured to
adapt to network conditions, which can be used to minimize the inference service
delay. In this chapter, we first introduce the concept of DNN inference, and its two
underlying technologies, i.e., mobile edge computing and machine learning. Then,
we present a case study on collaborative DNN inference via device-edge orches-
tration. Specifically, taking the channel variation and task arrival randomness into
consideration, we formulate the DNN inference delay minimization problem as a
constrained Markov decision process (CMDP). In the problem, sampling rate adap-
tion, inference task offloading, and edge computing resource allocation are jointly
optimizedwhile guaranteeing the long-term accuracy requirements of different infer-
ence services. To solve the problem, we propose a learning-based solution with three
steps. Firstly, the CMDP is transformed into an MDP by leveraging the Lyapunov
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optimization technique. Secondly, a deep reinforcement learning (RL) based algo-
rithm is proposed to solve the transformedMDP. Thirdly, an optimization subroutine
is embedded in the proposed deep RL algorithm to directly obtain the optimal edge
computing resource allocation, thereby expediting the training process. Simulation
results demonstrate that the proposed algorithm can reduce the average service delay
and preserve long-term inference accuracy with a high probability.

1 Introduction

Advanced neural network techniques and ubiquitous Internet of Things (IoT) devices
enable deep neural network (DNN) inference as a key technology in next generation
wireless networks. In recent years, DNNs have been applied in many intelligent
applications, ranging from facility monitoring, fault diagnosis, to object detection [1,
2]. For example, IoT devices in industrial applications, such as vibration sensors,
can sense the industrial operating environment. Then, the sensing data is sent to
a pre-trained DNN via wireless communication links, and the DNN processes the
sensing data and renders inference results. Such a process is referred to as DNN
inference [3]. A large number of experimental results indicate that DNN inference
can achieve high inference accuracy as compared to traditional alternatives, such as
decision trees in classification tasks.
Executing DNN inference tasks is computation-intensive. Tremendous num-

bers of multiply-and-accumulation operations are conducted in a DNN inference
task [4]. A device-only solution that purely executesDNN inference tasks at resource-
constrained mobile devices becomes intractable, due to prohibitive energy consump-
tion and a high service delay. For instance, processing an image using AlexNet incurs
up to 0.45 W energy consumption even in a tailored energy-efficient chip [5]. An
edge-only solution that purely offloads large-volume sensing data to resource-rich
edge nodes, e.g., access point (AP), suffers from an unpredictable service delay
due to time-varying wireless channels [6]. Therefore, neither a device-only nor an
edge-only solution can effectively support low-delay DNN inference services.

Collaborative DNN inference, which coordinates resource-constrained mobile
devices and the resource-rich AP, is a potential framework to provide low-delay and
high-accuracy inference services [7]. Within the collaborative inference framework,
sensing data from mobile devices can be either processed locally or offloaded to
the AP. At mobile devices, light-weight compressed DNNs, i.e., neural networks are
compressed without significantly decreasing their performance, are deployed due to
constrained on-board computing capability, which saves computing resources at the
cost of inference accuracy [8, 9]. At the AP, uncompressed DNNs are deployed to
provide high-accuracy inference services at the cost of network resources including
computing and communication resources. The overall service performance can be
enhanced through the task offloading between mobile devices and the AP.
However, the sampling rate adaption technique that dynamically configures the

sampling rates of mobile devices, is seldom investigated in the collaborative DNN
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inference framework. The sampling rates of mobile devices can be dynamically ad-
justed based on mobile devices’ real-time channel conditions and the AP’s compu-
tation workloads. As such, the sensing data from mobile devices can be compressed,
thereby reducing not only the offloaded data volume but also the task computation
workload. On the one hand, when the mobile device’s channel condition is poor or
the AP’s computation workload is heavy, the sampling rate is decreased to reduce
the offloaded data volume and the requested computation workload. As a result, the
service delay is reduced at the cost of limited inference accuracy. Our experimental
results show that the reduction of inference accuracy is acceptable in harsh network
environments. On the other hand, when the mobile device’s channel condition is
good and the edge computation workload is light, the sampling rate can be increased
to help deliver a high-accuracy service with an acceptable service delay. Therefore,
sampling rate adaption can effectively reduce the service delay, which should be
considered as an important component in the collaborative DNN inference frame-
work.
In this chapter, we present the collaborative DNN inference technology in wire-

less networks. Firstly, we give a comprehensive overview of DNN inference, mobile
edge computing (MEC) and machine learning. Secondly, we study a detailed case on
collaborative DNN inference via device-edge orchestration. The problem is formu-
lated as a constrainedMarkov decision process (CMDP) taking time-varying channel
conditions and random task arrivals into account. Specifically, three decisions, i.e.,
sampling rates of mobile devices, task offloading, and edge computation resource
allocation, are jointly optimized to achieve the minimum average service delay
while guaranteeing the long-term accuracy requirements of multiple DNN inference
services. Thirdly, since traditional RL algorithms target at optimizing a long-term
reward without considering policy constraints, it is difficult to directly apply them
to solve the formulated CMDP with long-term constraints. To address the issue,
we propose a three-step solution: (1) the Lyapunov optimization technique is lever-
aged to transform the CMDP into an MDP; (2) to solve the MDP, a learning-based
algorithm is developed based on the deep deterministic policy gradient (DDPG) al-
gorithm; and (3) the edge computing resource allocation can be directly solved via an
optimization subroutine, and then the optimization subroutine is incorporated in the
learning-based algorithm to reduce the training complexity. Extensive simulations
are conducted to validate the effectiveness of the proposed algorithm in reducing the
average service delay while preserving the long-term accuracy requirements.
The remainder of this chapter is organized as follows. Section 2 presents a com-

prehensive overview of three key technologies, including DNN inference, MEC, and
machine learning. The considered scenario, the system model, the formulated prob-
lem, and the proposed learning-based solution are presented in Section 3. Simulation
results are given in Section 4. Finally, Section 5 concludes this chapter.
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2 Background

2.1 DNN Inference

Recently, DNN inference for mobile devices has attracted much attention from
academia. A device-only solution resorts to on-board computing resources to facil-
itate DNN inference services. DNN compression techniques are applied to reduce
the computational complexity at the mobile devices. Typical techniques include
weight pruning [8] and knowledge distillation [10]. The authors in [4] designed
a light-weight DNN inference model, which can dynamically compress the model
size in order to balance inference accuracy and energy efficiency, taking the widely-
equipped energy-harvesting functionality in IoT devices into account. In another line
of research, by utilizing powerful edge computing servers, edge-assisted DNN in-
ference solutions can provide high-accuracy inference services. The authors in [11]
proposed an online video quality and computing resource allocation strategy tomaxi-
mize video analytic accuracy, thereby facilitating low-delay and accurate DNN-based
video analytics. Another important work proposed a novel device-edge collaborative
inference scheme [7]. In this work, the DNN model is partitioned and deployed at
both the device and the edge, and intermediate results are transferred via wireless
links. The above works can offer potential resource allocation solutions to enhance
DNN inference performance. In comparison with the existing works, the follow-
ing case study in this chapter takes the sampling rate adaption of IoT devices into
account, aiming at providing accuracy-guaranteed inference services in dynamic
network environments.

2.2 Mobile Edge Computing

In the current wireless networks, a large volume of computing demands are gener-
ated by mobile devices to support emerging applications, such as intelligent path
planning, safety applications, and on-board entertainments. Taking the autonomous
driving service as an example, when an autonomous vehicle is on the road, a large
number of computation-intensive tasks are required to be processed [12]. Processing
such computation-intensive tasks by mobile devices requires expensive on-device
computing facilities and degrades energy efficiency. As a remedy to these limita-
tions, a potential solution is to explore the MEC paradigm. In the MEC paradigm,
mobile devices can offload these computation tasks to nearby radio access networks
(RANs) with computation-powerful edge servers for prompt processing. Extensive
experiments show that the task processing delay can be significantly reduced by
leveraging the MEC paradigm.
Recently, MEC problems have been widely investigated from many perspec-

tives in wireless networks. In high-mobility vehicular networks, the roadside MEC
servers judiciously collaborate with each other to provide low-latency services for
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Fig. 1 An illustrative example of RL.

autonomous vehicles [13]. Also, in the context of vehicular networks, a dynamic
RAN slicing framework taking roadside MEC servers into account is proposed to
guarantee the quality of service requirements of autonomous driving services [14].
In recent emerging unmanned aerial vehicle (UAV) networks, a UAV endowed with
an MEC server is dispatched to collect and then process tasks from a large number
of IoT devices in the remote area [15]. In this chapter, the MEC server at the AP is
applied to handle computation-intensive DNN inference tasks.

2.3 Machine Learning

Recently, machine learning (ML) has achieved great success in a number of research
fields, such as computer vision, gaming, natural language processing, object detec-
tion, and traffic prediction [16]. The machine learning methods can be classified
into three categories: (1) Supervised learning, in which the training data structure
includes both features and labels, e.g., the support vector machine algorithm; (2)
Unsupervised learning, in which the training structure only includes features with-
out labels, e.g., the K-means algorithm; and (3) RL, in which the data structure is
defined by state, action, and reward. As shown in Fig. 1, the action can be the control
decisions, the state can be the environment conditions, and the observed reward from
the environment can be the system performance. The objective of RL is to learn a
good policy in a sequential decision making problem, such that the learning agent
can take an appropriate action based on the current state. A typical example of RL
algorithm is the deep Q learning algorithm. Seeing the great benefits of different
machine learning methods, it is expected that ML will be widely applied in future
wireless networks. The potential ML applications in the next generation wireless
networks, i.e., 6G networks, are investigated in [17, 18, 19], ranging from network
slicing, traffic prediction, to digital twin management.
The main benefits of ML methods can be summarized as follows: (1) Model-free,

which makes ML methods different from traditional model-based approaches. It
learns from the data and does not suffer from complicated mathematical modelling
and strong assumptions; and (2) Flexible, which means that ML methods can adap-
tively adjust the decision based on the current network environment. By training the
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Fig. 2 The collaborative DNN inference framework.

learning modules properly offline, ML methods can make quick online decisions in
highly complex scenarios.
Among different categories of ML algorithms, RL has attracted great attention

from both academia and industry in the field of wireless communications. RL al-
gorithms have been widely applied in network resource allocation, such as service
migration in vehicular networks [20], network slicing in cellular networks [17],
content caching in edge networks [21, 22], and beam alignment in mmWave net-
works [23, 24]. Hence, RL algorithms can be considered as potential solutions to
manage network resources for DNN inference services. In this chapter, we propose
a deep RL-based algorithm to deal with the resource allocation and sampling rate
selection problem in the collaborative DNN inference.

3 Collaborative DNN Inference via Device-Edge Orchestration

In this section, we introduce a case study on collaborative DNN inference, in which
mobile devices and the network edge are orchestrated to provide DNN inference
services. The collaborative DNN inference framework is presented in Section 3.1,
and the corresponding detailed performance analysis on service delay and accuracy
is provided in Section 3.2. Based on the system model, the problem is presented in
Section 3.3, which is solved via a learning-based algorithm in Section 3.4.

3.1 Collaborative DNN Inference Framework

We consider a wireless network with one AP to serve multiple types of mobile
devices, as illustrated in Fig. 2. In the network, the AP collects network information
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and then conducts resource orchestration decisions. LetM denote a set of 𝑀 types
of supported inference services, e.g., facility fault diagnosis and facility monitoring
services [25]. The set of mobile devices subscribed to service 𝑚 is denoted by N𝑚,
and the set of all mobile devices is denoted by N = ∪𝑚∈MN𝑚.
Consider industrial facility monitoring services as an example. In a smart factory,

wireless sensors are equipped tomeasure the status of the industrial facility. Vibration
sensors can sense the operation condition of a facility with a certain sampling rate,
e.g., 24 KHz. Mobile devices send the sensing data to a DNN for a specific inference
service, and then DNN processes the sensing data and conducts inference, e.g.,
fault diagnosis.
In the collaborative inference framework, two kinds of DNNs are deployed:

• Compressed DNN, which is deployed on mobile devices. The compressed
DNN can be implemented via the weight pruning technique, which prunes less-
important weights to reduce computational complexity while maintaining similar
inference accuracy [8];

• Uncompressed DNN, which is deployed at the AP. As such, 𝑀 types of un-
compressed DNNs share the edge computing resource to serve different kinds of
inference requests.

The collaborative DNN inference framework operates in a time-slotted manner.
The procedure consists of the following two steps:

• Step 1: Sampling rate selection. Mobile devices select their sampling rates based
on channel conditions and computation workloads. The set of candidate sampling
rates is denoted by K = {\1, \2, ..., \𝐾 }, where \𝐾 denotes the raw sampling
rate. We assume the sampling rate in K increases linearly with the index, i.e.,
\𝑘 = 𝑘\𝐾 /𝐾 . Let 𝑡 denote the time index, where 𝑡 ∈ T = {1, 2, ..., 𝑇}. Let X𝑡
denote the sampling rate decision matrix in time slot 𝑡, whose element 𝑥𝑡

𝑛,𝑘
= 1

indicates the mobile device 𝑛 ∈ N selects the 𝑘-th sampling rate;
• Step 2: Task processing. The sensing data from mobile devices within a time
slot is deemed as a computation task, which can be either offloaded to the AP or
executed locally. Let o𝑡 ∈ R |N |×1 denote the offloading decision vector in time slot
𝑡, whose element 𝑜𝑡𝑛 = 0 indicates offloading the computation task from mobile
device 𝑛. Otherwise, 𝑜𝑡𝑛 = 1 indicates executing the computation task locally.

3.2 Service Delay and Accuracy Analysis of Collaborative DNN
Inference

In this subsection, we analyze the inference delay and accuracy performance in the
considered collaborative DNN inference framework.
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3.2.1 Inference Delay Analysis

In the considered framework, a computation task can be either processed locally or
offloaded to the AP. In the following, we analyze the service delay in these two cases.

Case 1: Executing Tasks Locally. The task arrival rate of the 𝑛-th mobile device
in time slot 𝑡 is denoted by _𝑡𝑛. We assume that the task arrival follows a general
random distribution. Let b𝑡𝑛 = _𝑡𝑛a𝑚,∀𝑛 ∈ N𝑚 denote the raw data size of the
generated tasks at the 𝑛-th device. Here, a𝑚 denotes the raw data size of a task for
service 𝑚. When the sampling rate is selected, we can represent the data size of the
generated task by

Z
(
x𝑡𝑛

)
=

𝐾∑︁
𝑘=1

𝑥𝑡
𝑛,𝑘
b𝑡𝑛𝑘

𝐾
. (1)

Here, x𝑡𝑛 = {𝑥𝑡
𝑛,𝑘

}𝑘∈K is the 𝑛-th device’s sampling rate selection decision vector.
If the inference task is processed via a compressed DNN in the mobile device, the
service delay consists the queuing delay in the local computing queue and the task
processing delay, which is given by

𝑑𝑡𝑛,𝑙 =
𝑜𝑡𝑛[𝑚,𝑐

(
𝐵𝑡𝑛 + Z

(
x𝑡𝑛

) )
𝑓𝑛

,∀𝑛 ∈ N𝑚. (2)

Here, 𝑓𝑛 denotes the 𝑛-th mobile device’s central processing unit (CPU) frequency,
and [𝑚,𝑐 represents the computation intensity of the compressed DNN for the 𝑚-
th service. Let 𝐵𝑡𝑛 denote the backlogged computation tasks (in bits) in the local
computing queue, which is updated via

𝐵𝑡+1𝑛 = min
{[
𝐵𝑡𝑛 + 𝑜𝑡𝑛Z

(
x𝑡𝑛

)
− 𝑓𝑛𝜏

[𝑚,𝑐

]+
, 𝐵𝑚𝑎𝑥𝑛

}
, (3)

where [𝑥]+ = max{𝑥, 0}. Here, 𝐵𝑚𝑎𝑥𝑛 represents the local computing queue capacity,
and 𝜏 denotes the time slot duration. It is worth noting that tasks have to be dropped
if the local computing queue is full. The amount of the dropped tasks in the local
computing queue of device 𝑛 can be represented by

Ψ𝑡𝑏,𝑛 = max
{
𝐵𝑡𝑛 + 𝑜𝑡𝑛Z

(
x𝑡𝑛

)
− 𝑓𝑛𝜏

[𝑚,𝑐
− 𝐵𝑚𝑎𝑥𝑛 , 0

}
. (4)

Here, Ψ𝑡
𝑛,𝑏

> 0 indicates that a local computing queue overflow event occurs at the
𝑛-th device. Then, a corresponding penalty will be triggered to avoid queue overflow.

Case 2: Offloading Tasks to AP. If a task is offloaded to the AP, the task
will be processed by an uncompressed DNN. The service delay consists of three
components: task offloading delay, queuing delay in the edge computing queue, and
task processing delay, which are analyzed respectively as follows.1

1 Note that we assume free transmission backlog in this chapter.
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Task offloading delay component: The offloading delay of the 𝑛-th device is given
by

𝑑𝑡𝑛,𝑜 =

(
1 − 𝑜𝑡𝑛

)
Z

(
x𝑡𝑛

)
𝑅𝑡𝑛

. (5)

Here, the transmission rate between the 𝑛-th device and the AP, 𝑅𝑡𝑛, is represented
by

𝑅𝑡𝑛 =
𝑊

𝑁
log2

(
1 + 𝑃𝑇𝐺 (𝐻𝑡𝑛)

𝑁 𝑓 𝜎
2

)
. (6)

In the above equation, 𝑊 , 𝑃𝑇 , 𝐺 (𝐻𝑡𝑛), and 𝑁 𝑓 represent the system bandwidth,
transmit power, channel gain, and noise figure, respectively. Here, the background
noise is denoted by 𝜎2 = 𝑁𝑜𝑊/𝑁 , where 𝑁𝑜 is thermal noise spectrum density. In
this chapter, we assume that channel gain 𝐺 (𝐻𝑡𝑛) varies in terms of channel state
𝐻𝑡𝑛. Based on extensive real-time measurements, a finite set of channel statesH can
be used to model channel state 𝐻𝑡𝑛 [26]. A discrete-time and ergodic Markov chain
model can be used to characterize the evolution of channel states. The evolution is
given by a transition matrix P ∈ R |H |×|H | .

Task processing delay component: The tasks from all devices subscribed to the
𝑚-th service are placed in the edge computing queue for the 𝑚-th service. Here,∑
𝑛∈N𝑚

(
1 − 𝑜𝑡𝑛

)
Z

(
x𝑡𝑛

)
represents the amount of aggregated tasks. The computing

resource is dynamically allocated amongmultiple services at theAP based on service
task arrivals. The dynamic resource allocation can be implemented via a number
of existing containerization techniques, such as Dockers and Kubernetes [27]. The
computing resource allocation decision vector in time slot 𝑡 is denoted by c𝑡 ∈ R𝑀×1,
whose each element 0 ≤ 𝑐𝑡𝑚 ≤ 1 represents the portion of the allocated computing
resource to the 𝑚-th service. As such, the processing delay can be calculated by

𝑑𝑡𝑛, 𝑝 =
[𝑚,𝑢

(
1 − 𝑜𝑡𝑛

)
Z

(
x𝑡𝑛

)
𝑐𝑡𝑚 𝑓𝑏

,∀𝑛 ∈ N𝑚. (7)

Here, 𝑓𝑏 represents the computing server’s CPU frequency at the AP. The compu-
tation intensity of processing the 𝑚-th service task by the uncompressed DNN is
represented by [𝑚,𝑢 . It is worth noting that [𝑚,𝑢 > [𝑚,𝑐 . The underlying reason is
that the uncompressed DNN consumes more computing resource.

Queuing delay component: The queuing delay consists of the following two parts.

• The first part is the time taken to process backlogged tasks in the edge computing
queue, which is given as follows:

𝑑𝑡𝑛,𝑞 =
𝑄𝑡𝑚[𝑚,𝑢

𝑐𝑡𝑚 𝑓𝑏
,∀𝑛 ∈ N𝑚. (8)

In the above equation, 𝑄𝑡𝑚 represents the edge computing queue backlog for
the 𝑚-th service in time slot 𝑡. The task arrival can be represented by 𝑎𝑡𝑚 =∑
𝑛∈N𝑚

(
1 − 𝑜𝑡𝑛

)
Z

(
x𝑡𝑛

)
, and hence the edge computing queue backlog is updated

according to
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𝑄𝑡+1𝑚 = min
{[
𝑄𝑡𝑚 + 𝑎𝑡𝑚 − 𝑐𝑡𝑚 𝑓𝑏𝜏

[𝑚,𝑢

]+
, 𝑄𝑚𝑎𝑥𝑚

}
. (9)

Similar to that in local computing queues, tasks have to be dropped once the edge
computing queue is full, As such, the amount of dropped tasks for the 𝑚-th edge
computing queue is given as follows:

Ψ𝑡𝑞,𝑚 = max
{
𝑄𝑡𝑚 + 𝑎𝑡𝑚 − 𝑐𝑡𝑚 𝑓𝑏𝜏

[𝑚,𝑢
−𝑄𝑚𝑎𝑥𝑚 , 0

}
. (10)

In the above equation,Ψ𝑡𝑞,𝑚 > 0 indicates that an edge computing queue overflow
event occurs;

• The second part is the average waiting time among all newly arrived tasks until
all the tasks of device 𝑛 are processed, which is given as follows:

𝑑𝑡𝑛,𝑤 =
[𝑚,𝑢

∑
𝑖≠𝑛,𝑖∈N𝑚

(
1 − 𝑜𝑡

𝑖

)
Z

(
x𝑡
𝑖

)
2𝑐𝑡𝑚 𝑓𝑏

, (11)

where
∑
𝑖≠𝑛,𝑖∈N𝑚

(
1 − 𝑜𝑡

𝑖

)
Z

(
x𝑡𝑛

)
represents the amount of the aggregated tasks

excluding the task of device 𝑛.

Overall, taking both local execution and task offloading into consideration, the
inference delay of the collaborative DNN in time slot 𝑡 is calculated as follows:

𝐷𝑡 =
∑︁
𝑛∈N

(
𝑑𝑡𝑛,𝑙 + 𝑑

𝑡
𝑛,𝑜 + 𝑑𝑡𝑛, 𝑝 + 𝑑𝑡𝑛,𝑞 + 𝑑𝑡𝑛,𝑤

)
+ 𝑤𝑝

(∑︁
𝑛∈N

1{Ψ𝑡
𝑏,𝑛
>0} +

∑︁
𝑚∈M

1{Ψ𝑡
𝑞,𝑚>0}

)
.

(12)

Here, 1{𝑥 } the indicator function, which takes a value of 1 when the event 𝑥 is true,
and𝑤𝑝 > 0 is the positive unit penalty cost for queue overflow. In the above equation,
the first term indicates the required delay of completing all the tasks in time slot 𝑡,
and the second term indicates the penalty for the local and edge computing queues
overflow events.

3.2.2 Inference Accuracy Analysis

The achieved DNN inference accuracy is determined by two factors: the sampling
rate of a task and the type of DNN that executes a task. To obtain the inference
accuracy, the following two steps are conducted:

• Firstly, we characterize the relationship between the inference accuracy and the
sampling rate. The relationship is specified by accuracy function 𝑔(\𝑘 ),∀\𝑘 ∈ K.
To obtain the function, we first implement a DNN inference algorithm, i.e.,
AlexNet [29]. Then, we use the AlexNet to diagnose facility fault type according
to the collected bearing vibration signal [28]. This adopted bearing vibration
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Fig. 3 Inference accuracy in terms of different sampling rates on the bearing vibration dataset [28].

dataset in the experiment collects the vibration signal of drive end bearings at a
sampling rate of 48 KHz, and there are 10 types of possible faults. As shown in
Fig. 3, inference accuracy grows sub-linearly with the sampling rate. For example,
when the sampling rate increases from 18 KHz to 24 KHz, the accuracy increases
from 95% to 98.7%. Finally, we measure the accuracy function values in terms
of the sampling rates, and the accuracy function is plotted in Fig. 3. We can see
that the inference accuracy increases with the sampling rate, while the accuracy
performance gain decreases at a high sampling rate;

• Secondly, we characterize the relationship between the inference accuracy and the
type of DNN via experiments. Here, for the 𝑚-th service, the inference accuracy
of the compressed DNN is represented by ℎ𝑚,𝑐 , and that of the uncompressed
DNN is represented by ℎ𝑚,𝑢 . It is worth noting that, we have ℎ𝑚,𝑐 < ℎ𝑚,𝑢 . The
underlying reason is that an uncompressed DNN achieves higher fault diagnosis
accuracy than a compressed DNN.

As the sampling rate selection and the DNN model selection (i.e., task offloading
decision) are independent, DNN inference accuracy can be calculated via the product
of the accuracy value in terms of the selected sampling rate and the accuracy value
in terms of the selected DNN type, i.e.,

𝑔

(∑︁
𝑘∈K

𝑥𝑡𝑛,𝑘\𝑘

) (
𝑜𝑡𝑛ℎ𝑚,𝑐 +

(
1 − 𝑜𝑡𝑛

)
ℎ𝑚,𝑢

)
.

As such, in time slot 𝑡, the average inference accuracy for the 𝑚-th service can be
calculated as follows:
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𝐴𝑡𝑚 =
∑︁
𝑛∈N𝑚

1
|N𝑚 |

𝑔

(∑︁
𝑘∈K

𝑥𝑡𝑛,𝑘\𝑘

)
·
(
𝑜𝑡𝑛ℎ𝑚,𝑐 +

(
1 − 𝑜𝑡𝑛

)
ℎ𝑚,𝑢

)
. (13)

The above calculation takes both executing locally and offloading to the AP cases
into consideration.

The above DNN inference model can be easily extended and applied to cases
when other inference methods are adopted. The reason is that the accuracy
values in terms of sampling rates and DNN types can be acquired via practical
experiments rather than theoretical models.

3.3 Joint Sampling Rate Selection and Resource Allocation Problem

3.3.1 Constrained Markov Decision Process

In theDNN inference services, not only the service delay is required to beminimized,
but also their long-term accuracy requirements should be guaranteed. The CMDP is
a class of problems that target at maximizing the long-term reward while satisfying
the constraints on the long-term cost [30]. Hence, such problem is suitable to be
modeled as a CMDP. We define the action, state, reward, and state transition matrix
of the CMDP as follows:

Action: The action of the CMDP includes the sampling rate selection, task of-
floading, and edge computing resource allocation decisions, i.e.,

�̂�𝑡 = {X𝑡 , o𝑡 , c𝑡 }.

It is worth noting that the action’s components should satisfy following constraints:

• The sampling rate selection decision is constrained by 𝑥𝑡
𝑛,𝑘

∈ {0, 1};
• The binary task offloading decision is required, i.e., 𝑜𝑡𝑛 ∈ {0, 1};
• The continuous computing resource allocation decision is constrained by∑

𝑚∈M 𝑐𝑡𝑚 ≤ 1 and 0 ≤ 𝑐𝑡𝑚 ≤ 1.

The constraint of each action component is satisfied via projecting it into a feasible
action set.

State: The state of the CMDP includes four components: local computing queues
backlog of devices 𝐵𝑡𝑛, edge computing queues backlog 𝑄𝑡𝑚, channel conditions of
devices 𝐻𝑡𝑛, and the raw data size of the generated tasks at devices b𝑡𝑛. Hence, we
have

𝑠𝑡 ={{𝐵𝑡𝑛}𝑛∈N , {𝑄𝑡𝑚}𝑚∈M , {𝐻𝑡𝑛}𝑛∈N , {b𝑡𝑛}𝑛∈N}. (14)
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In the above state, both queue backlogs, including {𝐵𝑡𝑛}𝑛∈N and {𝑄𝑡𝑚}𝑚∈M , adopt a
unit in bits. As such, it results in a large state space, especially when the number of
devices is large.

Reward: The reward of the CMDP is designed to achieve the service delay
minimization, as shown in (12) in time slot 𝑡. In this way, the reward is defined as

𝑟 𝑡
(
𝑠𝑡 , �̂�𝑡

)
= −𝐷𝑡 .

State transition probability: State transition probability of the CMDP is given
as follows:

Pr
(
𝑠𝑡+1 |𝑠𝑡 , �̂�𝑡

)
=

∏
𝑛∈N
Pr

(
𝐵𝑡+1𝑛 |𝐵𝑡𝑛, 𝑥𝑡𝑛,𝑘 , 𝑜

𝑡
𝑛

)
·∏

𝑚∈M
Pr

(
𝑄𝑡+1𝑚 |𝑄𝑡𝑚,X𝑡 , o𝑡

)
·
∏
𝑛∈N
Pr

(
𝐻𝑡+1𝑛 |𝐻𝑡𝑛

)
·∏

𝑛∈N
Pr

(
b𝑡+1𝑛 |b𝑡𝑛

)
.

(15)

The above equality holds since different state terms are independent. Specifically,
the first two terms are controlled by the evolution of both local computing queues
and edge computing queues, as detailed in (3) and (9), respectively. The third term is
evolved based on the discrete-timeMarkov chain of channel conditions as mentioned
above. The last term is determined by the memoryless task arrival pattern. It is worth
noting that each of those state terms only depends on its previous state terms. Such
behaviour indicates the state transition is Markovian.
In our case, we aim to find a stationary policy 𝜋 ∈ Π which can dynamically

configure sampling rates selection X𝑡 , task offloading o𝑡 , and edge computing re-
source allocation c𝑡 based on state 𝑠𝑡 . The policy can minimize the service delay and
guarantee long-term inference accuracy requirements {𝐴𝑡ℎ𝑚 }𝑚∈M simultaneously. To
acquire the policy, the optimization problem is formulated as follows:

P0 : min
𝜋∈Π

lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1
E𝜋

[
𝐷𝑡

]
(16a)

s.t. lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝐴𝑡𝑚 ≥ 𝐴𝑡ℎ𝑚 ,∀𝑚 ∈ M . (16b)

The above problem can be deemed as a CMDP.

It is challenging to directly solve the above CMDP via dynamic programming
solutions [30]. The reasons are two-fold:
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• Firstly, the state transition probability is unknown due to the lack of statisti-
cal information on the channel condition variation and task arrival patterns
of all devices;

• Secondly, even if the state transition probabilities are known, large action
space and state space that grow with respect to the number of devices
incur an extremely high computational complexity, which makes dynamic
programming solutions intractable.

To solve the CMDP in dynamic environments, we aim to adopt a deep RL-based
algorithm. The benefit is that RL-based algorithm can be applied in large-scale
networks without requiring statistical information of network dynamics.

However, the existing RL algorithms, such as DDPG, are designed to solve
MDP problems without considering policy constraints. Due to the underlying
differences between CMDP and MDP, CDMP cannot be solved via traditional
RL algorithms.

To solve the problem, we propose a novel learning-based solution for CMDP in
the following.

3.4 Deep RL Based Solution

The proposed deep RL-based solution consists of the following three steps:

• Step 1: We leverage the Lyapunov optimization technique to deal with the long-
term constraints and transform the problem into an MDP which is suitable to be
solved by RL algorithms;

• Step 2: We develop a deep RL-based algorithm to solve the MDP;
• Step 3: We embed an optimization subroutine in the proposed RL algorithm to
directly obtain the optimal edge computation resource allocation.

These three steps are detailed in the following.

3.4.1 Markov Decision Process Transformation (Step 1)

To solve problem P0, the major challenge is to handle the long-term constraints. To
address this challenge, we leverage the Lyapunov technique [31, 32].
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The basic idea of the step is to construct accuracy deficit queues to characterize
the satisfaction status of the long-term accuracy constraints, thereby guiding
the learning agent to meet the long-term accuracy constraints.

As such, the problem is transformed in the following way.

• Firstly, inference accuracy deficit queues are constructed for all services. The
dynamics of the queue evolve as follows:

𝑍 𝑡+1𝑚 =
[
𝐴𝑡ℎ𝑚 − 𝐴𝑡𝑚 + 𝑍 𝑡𝑚

]+
,∀𝑚 ∈ M . (17)

Here, the deviation of the achieved instantaneous accuracy from the long-term
accuracy requirement is represented by 𝑍 𝑡𝑚. Its initial state is set to 𝑍0𝑚 = 0. Next,
we introduce a Lyapunov function to characterize the satisfaction status of the
long-term accuracy constraint. The Lyapunov function is defined as [31, 32, 33]

𝐿
(
𝑍 𝑡𝑚

)
=

(
𝑍 𝑡𝑚

)2
2

.

In the above equation, a smaller value of 𝐿
(
𝑍 𝑡𝑚

)
means better long-term accuracy

constraint satisfaction.
• Secondly, to guarantee the long-term accuracy constraints, the Lyapunov function
should be consistently pushed to a relatively low value. Therefore, a one-shot Lya-
punov drift is introduced to capture the Lyapunov function’s variation across two
subsequent time slots [31]. When 𝑍 𝑡𝑚 is given, we define the one-shot Lyapunov
drift as follows: Δ

(
𝑍 𝑡𝑚

)
= 𝐿

(
𝑍 𝑡+1𝑚

)
− 𝐿

(
𝑍 𝑡𝑚

)
. We can obtain an upper bound as

follows:

Δ
(
𝑍 𝑡𝑚

)
=
1
2

((
𝑍 𝑡+1𝑚

)2
−

(
𝑍 𝑡𝑚

)2)
≤ 1
2

((
𝑍 𝑡𝑚 + 𝐴𝑡ℎ𝑚 − 𝐴𝑡𝑚

)2
−

(
𝑍 𝑡𝑚

)2)
=
1
2

(
𝐴𝑡ℎ𝑚 − 𝐴𝑡𝑚

)2
+ 𝑍 𝑡𝑚

(
𝐴𝑡ℎ𝑚 − 𝐴𝑡𝑚

)
≤ 𝐶𝑚 + 𝑍 𝑡𝑚

(
𝐴𝑡ℎ𝑚 − 𝐴𝑡𝑚

)
.

(18)

In the above equation, 𝐶𝑚 =
(
𝐴𝑡ℎ𝑚 − 𝐴𝑚𝑖𝑛𝑚

)2 /2 is a constant. Here, 𝐴𝑚𝑖𝑛𝑚 is
the lowest inference accuracy which can be required for service 𝑚. Due to the
substitution of (17), the first inequality holds. The second inequality can be
derived due to 𝐴𝑡𝑚 ≥ 𝐴𝑚𝑖𝑛𝑚 .

• Thirdly, leveraging the Lyapunov optimization theory, the original CMDP to
minimize the service delay and guarantee the long-term accuracy requirements
can be transformed to a problem of minimizing a drift-plus-cost. The transformed
problem is given as follows:



16 Wen Wu, Yujie Tang, Peng Yang, Weiting Zhang, and Ning Zhang∑︁
𝑚∈M

Δ
(
𝑍 𝑡𝑚

)
+𝑉 · 𝐷𝑡 ≤

∑︁
𝑚∈M

𝐶𝑚 +
∑︁
𝑚∈M

𝑍 𝑡𝑚

(
𝐴𝑡ℎ𝑚 − 𝐴𝑡𝑚

)
+𝑉 · 𝐷𝑡 . (19)

In the above equation, the inequality holds due to the upper bound in (18). Here
𝑉 represents a positive parameter which can adjust the tradeoff between the
satisfaction status of the long-term accuracy constraints and the service delay
minimization. The rationale behind this is that, when the long-term accuracy
constraint is violated, i.e., 𝑍 𝑡𝑚 > 0, it is more urgent to stratify the long-term
constraints via improving the instantaneous inference accuracy than to reduce the
service delay.

Through this transformation, we reformulate the CMDP problem as a regular
MDP problem. The objective of the MDP is to minimize the upper bound of drift-
plus-cost as shown in (19). In such a reformulated MDP, we should modify the
action, state, reward, and state transition matrix since the accuracy deficit queues are
incorporated. The modified elements of the MDP are given as follows:

Modified action: The action is the same as that in the CMDP, i.e.,

𝑎𝑡 = �̂�𝑡 = {X𝑡 , o𝑡 , c𝑡 }.

Modified state: The accuracy deficit queue backlog of services {𝑍 𝑡𝑚}𝑚∈M should
be incorporated in the state space, as compared to the state of the CMDP. The
modified state is given by

𝑠𝑡 = {𝑠𝑡 , {𝑍 𝑡𝑚}𝑚∈M}. (20)

Modified reward: To minimize the drift-plus-cost in (19), the reward is modified
as follows:

𝑟 𝑡 = −𝑉 · 𝐷𝑡 −
∑︁
𝑚∈M

𝑍 𝑡𝑚

(
𝐴𝑡ℎ𝑚 − 𝐴𝑡𝑚

)
. (21)

It is worth noting that we ignore the constant term
∑
𝑚∈M 𝐶𝑚 in (19) in the reward

for simplicity.
Modified state transition probability: The evolution of state transition prob-

ability changes due to the incorporation of accuracy deficit queue backlogs in the
state, which is detailed as follows:

Pr
(
𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡

)
= Pr

(
𝑠𝑡+1 |𝑠𝑡 , �̂�𝑡

)
·

∏
𝑚∈M

Pr
(
𝑍 𝑡+1𝑚 |𝑍 𝑡𝑚,X𝑡 , o𝑡

)
. (22)

In the above equation, the second term represents the evolution of the accuracy
deficit queue backlog based on (17). It is clear that the Markovian property holds for
the overall state transition.
Based on the above reformulation and modification, we transform problem P0

into an MDP problem as follows:
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P1 : min
𝜋∈Π

lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1
E𝜋

[ ∑︁
𝑚∈M

𝑍 𝑡𝑚

(
𝐴𝑡ℎ𝑚 − 𝐴𝑡𝑚

)
+𝑉 · 𝐷𝑡

]
. (23)

Similar to solvingCMDPasmentioned above, using dynamic programming solutions
to solve an MDP faces the curse of dimensionality issue since the state space is
large. Therefore, we propose a deep RL-based algorithm to deal with the MDP in
the following.

3.4.2 Optimization Subroutine for Resource Allocation (Step 3)

For better understanding, we first introduce the third step in the optimization sub-
routine, and then introduce the second step in the RL algorithm design.
As mentioned above, problem P1 can be solved by RL algorithms. However,

we can leverage an inherent property of edge computing resource allocation to
reduce the training complexity of RL algorithms. Based on theoretical analysis
on (23), we find that the edge computing resource allocation and the inference
accuracy performance are independent. Specifically, the edge computing resource
allocation only impacts the one-shot service delay performance. Therefore, in time
slot 𝑡, when task offloading and sampling rate selection decisions are given, we can
obtain the optimal computing resource allocation decision via solving the following
optimization problem:

P2 : min
c𝑡

𝐷𝑡

s.t.
∑︁
𝑚∈M

𝑐𝑡𝑚 ≤ 1 (24a)

0 ≤ 𝑐𝑡𝑚 ≤ 1. (24b)

Furthermore, an analysis of (12) demonstrates that the edge computing resource
allocation only impacts the task processing delay and queuing delay at the AP, i.e.,∑
𝑛∈N

(
𝑑𝑡𝑛, 𝑝 + 𝑑𝑡𝑛,𝑞 + 𝑑𝑡𝑛,𝑤

)
. In addition, we find that the aggregated delay from the

perspective of all devices is equivalent to the aggregated delay from the perspective
of all services. As such, we can rewrite the objective function in P2 as

∑
𝑚∈M 𝑑𝑡𝑚.

As such, we have

𝑑𝑡𝑚 =
∑︁
𝑛∈N𝑚

(
[𝑚,𝑢

(
1 − 𝑜𝑡𝑛

)
Z

(
x𝑡𝑛

)
𝑐𝑡𝑚 𝑓𝑏

+
𝑄𝑡𝑚[𝑚,𝑢

𝑐𝑡𝑚 𝑓𝑏
+
[𝑚,𝑢

∑
𝑖≠𝑛,𝑖∈N𝑚

(
1 − 𝑜𝑡

𝑖

)
Z

(
x𝑡
𝑖

)
2𝑐𝑡𝑚 𝑓𝑏

)
.

(25)

The above equation represents the experienced delay of the 𝑚-th service. Through
analysis, we show the convexity property of the problem. Then, the following theorem
can be used to obtain the optimal edge computation resource allocation in each
time slot.
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Theorem 1 The optimal edge computing resource allocation for problem P2 is
given by

𝑐𝑡 ,★𝑚 =

√︁
Λ𝑡𝑚∑

𝑚∈M
√︁
Λ𝑡𝑚

,∀𝑚 ∈ M, (26)

where

Λ𝑡𝑚 =
∑︁
𝑛∈N𝑚

(
[𝑚,𝑢

(
1 − 𝑜𝑡𝑛

)
Z

(
x𝑡𝑛

)
+𝑄𝑡𝑚[𝑚,𝑢 +

[𝑚,𝑢

2

∑︁
𝑖≠𝑛,𝑖∈N𝑚

(
1 − 𝑜𝑡𝑖

)
Z

(
x𝑡𝑖

))
.

(27)

Proof The theorem is proved via the following two steps:
• Firstly, we prove the problem to be a convex optimization problem. For simplicity,
𝑡 is omitted in the proof. By the definition of Λ𝑚 in (27), we can rewrite the
objective function as

∑
𝑚∈M Λ𝑚/(𝑐𝑚 𝑓𝑏). The second-order derivative of the

objective function can be derived as 2Λ𝑚/
(
𝑓𝑏𝑐
3
𝑚

)
> 0. In addition, we know that

the inequality constraint is linear. Hence, the problem is a convex optimization
problem.

• Secondly, we construct a Lagrange function for the problem by ignoring the
inequality constraints, which is given as follows:

L (c, 𝑎) =
∑︁
𝑚∈M

Λ𝑚

𝑐𝑚 𝑓𝑏
+ 𝑎

( ∑︁
𝑚∈M

𝑐𝑚 − 1
)
. (28)

Here, 𝑎 represents the Lagrange multiplier. According to Karush-Kuhn-Tucker
conditions for convex optimization [34], the following equation is obtained:

𝜕𝐿 (c, 𝑎)
𝜕𝑐𝑚

= − Λ𝑚

𝑓𝑏𝑐
2
𝑚

+ 𝑎 = 0,∀𝑚 ∈ M . (29)

Here, 𝑐★𝑚 =
√︁
Λ𝑚/𝑎 𝑓𝑏 ,∀𝑚 ∈ M can be obtained by solving the above equa-

tion. Then, we substitute the above result into the complementary slackness
condition

∑
𝑚∈M 𝑐★𝑚 − 1 = 0. Then, the optimal value of 𝑎 can be given by

𝑎★ =
(∑

𝑚∈M
√
Λ𝑚

)2/ 𝑓𝑏 . Based on the above equation, 𝑎★ takes a positive value,
and hence {𝑐★𝑚}𝑚∈M are positive values, which shows that constraint (24b), i.e.,
𝑐𝑡𝑚 ≥ 0,∀𝑚 ∈ M, is automatically satisfied. We can then prove Theorem 1 by
substituting 𝑎★ into the complementary slackness condition. �

This optimization subroutine for the edge computing resource allocation is
embedded in the following proposed deep RL-based algorithm. As such, we
can reduce the training complexity of the proposed RL algorithm. The reason
is that it is no longer necessary to train the neural networks to obtain an optimal
edge computing resource allocation policy.
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Algorithm 1 Deep RL-based algorithm for sampling rate adaption and resource
allocation
Initialize all neural networks and the experience replay memory;
for each episode do
Reset the environment and obtain initial state 𝑠0;
for time slot 𝑡 ∈ T do
Determine sampling rate selection and task offloading actions {X𝑡 , o𝑡 } according to 𝑠𝑡 ;
Determine edge computing resource allocation action c𝑡 by (26);
Send joint action 𝑎𝑡 = {X𝑡 , o𝑡 , c𝑡 } to all mobile devices by the AP;
Execute the joint action at mobile devices;
Observe reward 𝑟 𝑡 and new state 𝑠𝑡+1;
Store transition {𝑠𝑡 , 𝑎𝑡 , 𝑟 𝑡 , 𝑠𝑡+1 } in the epxerience replay memory;
Sample a random minibatch transitions from the epxerience replay memory;
Train the critic and actor network by (30) and (31), respectively;
Update target networks by (32).

end for
end for

3.4.3 Deep RL Based Algorithm (Step 2)

In the following, we propose a deep RL-based algorithm to solve problem P1.
The proposed algorithm is extended from the well-known DDPG algorithm [35].
However, the DDPG algorithm and the proposed algorithm are different. The main
difference is thatwe embed the above optimization subroutine for computing resource
allocation into the RL algorithm to reduce the training complexity. The proposed
algorithm can be deployed at the AP which is in charge of collecting the network
state information and enforcing the policy to all connected devices.
In the proposed algorithm, the learning agent consists of an actor network that

determines the action based on the current state and a critic network that evaluates
the determined action based on the reward feedback from the environment. The
actor network and the critic network are denoted by `(𝑠 |𝜙`) and 𝑄(𝑠, 𝑎 |𝜙𝑄), re-
spectively. The corresponding neural network weights are represented by 𝜙` and 𝜙𝑄,
respectively. The details of the deep RL-based algorithm are shown in Algorithm
3.4.3.
The proposed algorithm operates in a time-slotted manner, which consists of the

following three stages:

• Stage 1: Obtain experience by interacting with the environment. The actor
network generates the task offloading and sampling rate selection decisions based
on the current network state 𝑠𝑡 . The decisions are generated with an additive pol-
icy exploration noise that follows a Gaussian distributionN

(
0, 𝜎2

)
. Additionally,

the edge computation resource allocation action is generated by the optimization
subroutine. Next, the joint action is executed at all mobile devices, and the cor-
responding reward 𝑟 𝑡 is obtained. In addition, we can observe the next state 𝑠𝑡+1
from the environment. The state transition tuple {𝑠𝑡 , 𝑎𝑡 , 𝑟 𝑡 , 𝑠𝑡+1} is stored in the
experience replay memory for actor and critic network training;
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• Stage 2: Train the actor and critic network based on the stored experience.
A minibatch of transitions are randomly sampled from the experience replay
memory to break experience correlation, thereby avoiding the divergence issue
caused by DNN. By minimizing the following loss function, the critic network is
trained:

𝐿𝑜𝑠𝑠

(
𝜙𝑄

)
=
1
𝑁𝑏

𝑁𝑏∑︁
𝑖=1

(
𝑦𝑖 −𝑄(𝑠𝑖 , 𝑎𝑖 |𝜙𝑄)

)2
, (30)

where
𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄 ′(𝑠𝑖+1, `′(𝑠𝑖+1 |𝜙`

′) |𝜙𝑄′).

Here, 𝑁𝑏 represents the minibatch size. Here, `′(𝑠 |𝜙`
′) and𝑄 ′(𝑠, 𝑎 |𝜙𝑄′) indicate

actor and critic target networks with weights 𝜙`′ and 𝜙𝑄′ . The actor network is
trained via the following policy gradient

∇𝜙` ≈ 1
𝑁𝑏

𝑁𝑏∑︁
𝑖=1

∇𝑎𝑄(𝑠𝑖 , 𝑎 |𝜙𝑄) |𝑠=𝑠𝑖 ,𝑎=` (𝑠𝑖)∇\` `(𝑠𝑖 |𝜙`) |𝑠𝑖 . (31)

• Stage 3: Update target networks. The actor and critic target networks are softly
updated according to the following equations to ensure network training stability,
i.e.,

𝜙𝑄
′
= 𝛿𝜙𝑄 + (1 − 𝛿)𝜙𝑄′

𝜙`
′
= 𝛿𝜙` + (1 − 𝛿)𝜙`′ .

(32)

In the above equations, 0 < 𝛿 � 1 is the target network update ratio.

Remark: Traditional RL algorithms, e.g., DDPG, can be applied to solve
MDP problems, in which learning agents seek to optimize a long-term reward
without policy constraints, while they cannot deal with constrained long-term
optimization problems [30, 36]. Our proposed deep RL-based algorithm can
address long-term constraints within the RL framework by the modification
of reward based on the Lyapunov optimization technique. In addition, an
optimization subroutine is embedded in our algorithm to further reduce the
training complexity.
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Fig. 4 Average delay performance of the proposed algorithm with respect to training episodes in
the training stage.

4 Performance Evaluation

4.1 Experiment Setup

We consider a smart factory in which mobile devices such as vibration sensors
are randomly scattered. Those devices mounted on industrial facilities (e.g., robot
arms) capture the operating information. Those sensing data are then either locally
processed or offloaded to an AP in the factory.

DNN inference services: We consider two kinds of DNN inference services:

• Type I Service: a facility fault diagnosis service that identifies the type of fault
according to the collected bearing vibration signal dataset [28]. Because the period
of a time slot is one second, we configure the task data size to be the data volume
of a one-second signal, given by the multiplication of the raw sampling rate and
the signal quantization parameter. The bearing vibration signal is captured at
48 KHz sampling rate and 16 bit quantization. The resulting task data size is
768 kilobits. For this type of service, we set the long-term accuracy threshold to
be 0.8;

• Type II Service: an extended service from the Type I which diagnoses facility
fault based on a low-grade bearing vibration dataset at higher inference accuracy
requirement, 0.9. The low-grade dataset senses the vibration at a lower sampling
rate of 32 KHz, and the resulting task data size is 512 kilobits.



22 Wen Wu, Yujie Tang, Peng Yang, Weiting Zhang, and Ning Zhang

0 200 400 600 800

Training Episodes

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y

Type I Service

Type II Service

Fig. 5 Inference accuracy performance of the proposed learning algorithm with respect to training
episodes in the training stage.

We assume the task arrival rate of both services at each device in each time slot
form a uniform distribution. Four potential sampling rates for each device are con-
sidered in the simulation, which are 25%, 50%, 75% and 100% of the raw sampling
rate. Accordingly, based on extensive experiments on the dataset [28], the required
accuracy to those sampling rates are 0.59, 0.884, 0.950 and 0.987, and the balance
parameter, 𝑉 , is set to be 0.05.

Neural network structure: To train the proposed deep RL-based algorithm, we
set the learning rate of the actor and the critic to be 10−4 and 10−3, respectively. The
hidden units of both the actor and the critic are set to be (64, 32), while the ReLU
function is employed for hidden activation. Note that, the Tanh function is used for
actor output activation. The training process lasts for 1,000 episodes, each of which
consists of 200 time slots.

Benchmark: We consider the following two benchmark algorithms for perfor-
mance comparison:

• Delay myopic: Each device dynamically determines the sampling rate and task
offloading decisions, to maximize the one-step reward in (21) based on the net-
work state;

• Static configuration: Each device follows a fixed configuration on the sampling
rate and the task offloading, which satisfy the services’ accuracy requirements.
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Fig. 6 Performance comparison of the service delay in terms of different task arrival rates.
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Fig. 7 Inference accuracy performance comparison in terms of different task arrival rates.

4.2 Convergence Performance

Figure 4 shows the performance comparison of service delay in the training stage. The
average service delay drops as the training continues, which suggests the convergence
of the proposed RL-based algorithm. In addition, Fig. 5 illustrates the accuracy
performance for both services with training episodes. The accuracy performance
fluctuates at the beginning of the training. But after around 1,000 episodes of training,
the average accuracy converges to the required level.
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Fig. 8 Service delay in terms of CPU frequency of the edge server.

4.3 Impact of Task Arrival Rate

After the algorithm is well-trained offline, the performance of the proposed infer-
ence algorithm is evaluated in an online scenario. Fig. 6 gives the comparison on the
average service delay with respect to different task arrival rates for 𝑊 = 20 MHz.
Each arrival rate is added up with a 95% confidence interval. It is shown that the
service delay grows with the task arrival rate of the constrained communication and
computing resources. Meanwhile, the proposed RL-based algorithm gives signifi-
cantly lower service delay than the benchmark schemes. This is because the proposed
algorithm can capture network dynamics, including the pattern of task arrival and
channel condition variation, by continuously interacting with the environment. Such
knowledge is learnt and utilized by the algorithm to make online decisions that
improves long-term performance. In contrast, benchmark schemes only focus on
performance in the short-term, and they cannot adapt to network dynamics either.
In particular, the proposed algorithm reduces the average service delay by 19% and
25%, respectively, as compared with delay myopic and static configuration schemes.
We also give the boxplot accuracy distribution of both services with respect to dif-

ferent task arrival rates in Fig. 7. In this figure, the long-term accuracy requirements
for both services are 0.8 and 0.9, respectively. The proposed algorithm is able to
guarantee the long-term accuracy requirements of both services, with the maximum
error probability less than 0.5%.
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4.4 Impact of Optimization Subroutine

We further evaluate the performance of the proposed algorithm with a fixed com-
puting resource allocation strategy (referred to as proposed-fixed). This strategy
allocates edge computing resource based on the average computing demand of two
services. As shown in Fig. 8, the proposed algorithm provides significant perfor-
mance gain in case of limited edge computing resource. Specifically, the performance
gain in reducing the service delay decreases from 1.98× at 1 GHz CPU frequency
to only 1.02× at 1.2 GHz CPU frequency. The underlying reason is that efficient
resource allocation weighs higher in resource-constrained scenarios. The simula-
tion curves confirm the effectiveness of the optimization subroutine of computing
resource allocation. In light of this optimization subroutine, reducing the training
complexity of the proposed RL algorithms can also be considered.

5 Conclusion

In this chapter, we have jointly investigated the collaborative DNN inference with
sampling rate adaption and resource allocation problem in wireless networks. A deep
RL-based algorithm has been devised to capture the pattern of the channel variation
and the task arrival, which is then employed to deliver accuracy-guaranteed DNN
inference services. The proposed algorithm can dynamically reduce the service delay,
without requiring prior information of network dynamics.
For DNN inference, further research is required in the following aspects: (1) DNN

inference performance should be investigated in the mobile scenarios considering
devicemobility; and (2) Instead of task offloading, the DNNmodel can be partitioned
into a device-side model and a server-side model for collaborative inference. As
such, the partition point and resource (computing and spectrum) allocation should
be judiciously considered, especially in dynamic network environments.
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